Feed aggregator

One pull of a string is all it takes to deploy these complex structures

MIT Latest News - Tue, 12/23/2025 - 12:00am

MIT researchers have developed a new method for designing 3D structures that can be transformed from a flat configuration into their curved, fully formed shape with only a single pull of a string.

This technique could enable the rapid deployment of a temporary field hospital at the site of a disaster such as a devastating tsunami — a situation where quick medical action is essential to save lives.

The researchers’ approach converts a user-specified 3D structure into a flat shape composed of interconnected tiles. The algorithm uses a two-step method to find the path with minimal friction for a string that can be tightened to smoothly actuate the structure.

The actuation mechanism is easily reversible, and if the string is released, the structure quickly returns to its flat configuration. This could enable complex, 3D structures to be stored and transported more efficiently and with less cost.

In addition, the designs generated by their system are agnostic to the fabrication method, so complete structures can be produced using 3D printing, CNC milling, molding, or other techniques.

This method could enable the creation of transportable medical devices, foldable robots that can flatten to enter hard-to-reach spaces, or even modular space habitats that can be actuated by robots working on the surface of Mars.

“The simplicity of the whole actuation mechanism is a real benefit of our approach. The user just needs to provide their intended design, and then our method optimizes it in such a way that it holds the shape after just one pull on the string, so the structure can be deployed very easily. I hope people will be able to use this method to create a wide variety of different, deployable structures,” says Akib Zaman, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this new method.

He is joined on the paper by MIT graduate student Jacqueline Aslarus; postdoc Jiaji Li; Associate Professor Stefanie Mueller, leader of the Human-Computer Interaction (HCI) Engineering Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL); and senior author Mina Konaković Luković, an assistant professor and leader of the Algorithmic Design Group in CSAIL. The research was presented at the Association for Computing Machinery’s SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia.

From ancient art to an algorithm

Creating deployable structures from flat pieces simplifies on-site assembly and could be especially useful in constructing emergency shelters after natural disasters. On a smaller scale, items like foldable bike helmets could improve the safety of riders who would otherwise be unable to carry a bulky helmet.

But converting flat, deployable objects into their 3D shape often requires specialized equipment or multiple steps, and the actuation mechanism is typically difficult to reverse.

“Because of these challenges, deployable structures tend to be manually designed and quite simple, geometrically. But if we can create more complex geometries, while simplifying the actuation mechanism, we could enhance the capabilities of these deployables,” Zaman says.

To do this, the researchers created a method that automatically converts a user’s 3D design into a flat structure comprised of tiles, connected by rotating hinges at the corners, which can be fully actuated by pulling a single string one time.

Their method breaks a user design into a grid of quadrilateral tiles inspired by kirigami, the ancient Japanese art of paper cutting. With kirigami, by cutting a material in certain ways, they can encode it with unique properties. In this case, they use kirigami to create an auxetic mechanism, which is a structure that gets thicker when stretched and thinner when compressed.

After encoding the 3D geometry into a flat set of auxetic tiles, the algorithm computes the minimum number of points that the tightening string must lift to fully deploy the 3D structure. Then, it finds the shortest path that connects those lift points, while including all areas of the object’s boundary that must be connected to guide the structure into its 3D configuration. It does these calculations in such a way that the optimal string path minimizes friction, enabling the structure to be smoothly actuated with just one pull.

“Our method makes it easy for the user. All they have to do is input their design, and our algorithm automatically takes care of the rest. Then all the user needs to do is to fabricate the tiles exactly the way it has been computed by the algorithm,” Zaman says.

For instance, one could fabricate a structure using a multi-material 3D printer that prints the hinges of the tiles with a flexible material and the other surfaces with a hard material.

A scale independent method

One of the biggest challenges the researchers faced was figuring out how the string route and the friction within the string channel can be effectively modeled as close to physical reality.

“While playing with a few fabricated models, we observed that closing boundary tiles is a must to enable a successful deployment and the string must be routed through them. Later, we proved this observation mathematically. Then, we looked back at an age-old physics equation and used it to formulate the optimization problem for friction minimization,” he says.

They built their automatic algorithm into an interactive user interface that allows one to design and optimize configurations to generate manufacturable objects.

The researchers used their method to design several objects of different sizes, from personalized medical items including a splint and a posture corrector to an igloo-like portable structure. They also fabricated a deployable, human-scale chair they designed using their method.

This method is scale independent, so it could be used to create tiny deployable objects that are injected and actuated inside the body, or architectural structures, like the frame of a building, that are deployed and actuated on-site using cranes.

In the future, the researchers want to further explore the design of tiny structures, while also tackling the engineering challenges involved in creating architectural installations, such as determining the ideal cable thickness and the necessary strength of the hinges. In addition, they want to create a self-deploying mechanism, so the structures do not need to be actuated by a human or robot.

This research is funded, in part, by an MIT Research Support Committee Award.

MIT in the media: 2025 in review

MIT Latest News - Mon, 12/22/2025 - 5:20pm

“At MIT, innovation ranges from awe-inspiring technology to down-to-Earth creativity,” noted Chronicle, during a campus visit this year for an episode of the program. In 2025, MIT researchers made headlines across print publications, podcasts, and video platforms for key scientific advances, from breakthroughs in quantum and artificial intelligence to new efforts aimed at improving pediatric health care and cancer diagnosis.

MIT faculty, researchers, students, alumni and staff helped demystify new technologies, highlighted the practical hands-on learning the Institute is known for, and shared what inspires their research with viewers, readers and listeners around the world. Below is a sampling of news moments to revisit.

Let’s take a closer look at MIT: It’s alarming to see such a complex, important institution subject to the whims of today’s politics
Washington Post columnist George F. Will reflects on MIT and his view of “the damage that can be done to America’s meritocracy by policies motivated by hostility toward institutions vital to it.” Will notes that MIT has an “astonishing economic multiplier effect: MIT graduates have founded companies that have generated almost $1.9 trillion in annual revenue (a sum almost equal to Russia’s GDP) and 4.6 million jobs.”
Full story via The Washington Post

At MIT, groundbreaking ideas blend science and breast cancer detection innovation
Chronicle visited MIT this spring to learn more about how the Institute “nurtures groundbreaking efforts, reminding us that creativity and science thrive together, inspiring future advancements in engineering, medicine, and beyond.”
Full story via Chronicle

New MIT provost looks to build more bridges with CEOs
Provost Anantha Chandrakasan shares his energy and enthusiasm for MIT, and his goals for the Institute.
Full story via The Boston Globe

Five things New England researchers helped develop with federal funding
Professors John Guttag and David Mindell discuss MIT’s long history of developing foundational technologies — including the internet and the first widely used electronic navigation system — with the support of federal funding.
Full story via The Boston Globe

Bostonians of the Year 2025: First responders, university presidents, and others who exemplified courage
President Sally Kornbluth is honored by The Boston Globe as one of the Bostonians of the Year, a list that spotlights individuals across the region who, in choosing the difficult path, “showed us what strength looks like.” Kornbluth was recognized for her work being of the “most prominent voices rallying to protect academic freedom.”
Full story via The Boston Globe

Practical education and workforce preparation

College students flock to a new major: AI
MIT’s new Artificial Intelligence and Decision Making major is aimed at teaching students to “develop AI systems and study how technologies like robots interact with humans and the environment.”
Full story via New York Times

50 colleges with the best ROI
MIT has been named among the top colleges in the country for return on investmentMIT “is need-blind and full-need for undergraduate students. Six out of 10 students receive financial aid, and almost 88% of the Class of 2025 graduated debt-free.”
Full story via Boston 25

Desirée Plata: Chemist, oceanographer, engineer, entrepreneur
Professor Desirée Plata explains that she is most proud of her work as an educator. “The faculty of the world are training the next generation of researchers,” says Plata. “We need a trained workforce. We need patient chemists who want to solve important problems.”
Full story via Chemical & Engineering News

Taking a quantum leap

MIT launches quantum initiative to tackle challenges in science, health care, national security
MIT is “taking a quantum leap with the launch of the new MIT Quantum Initiative (QMIT). “There isn't a more important technological field right now than quantum with its enormous potential for impact on both fundamental research and practical problems,” said President Sally Kornbluth.
Full story via State House News Service

Peter Shor on how quantum tech can help climate
Professor Peter Shor helps disentangle quantum technologies.
Full story via The Quantum Kid

MIT researchers develop device to enable direct communication between multiple quantum processors
MIT researchers made a key advance in the creation of a practical quantum computer.
Full story via Military & Aerospace Electronics

Fortifying national security and aiding disaster response

Nano-material breakthrough could revolutionize night vision
MIT researchers developed “a new way to make large ultrathin infrared sensors that don’t need cryogenic cooling and could radically change night vision for the military.”
Full story via Defense One

MIT researchers develop robot designed to help first-responders in disaster situations
Researchers at MIT engineered SPROUT (Soft Pathfinding Robotic Observation Unit), a robot aimed at assisting first-responders.
Full story via WHDH

MIT scientists make “smart” clothes that warn you when you’re sick
As part of an effort to help keep service members safe, MIT scientists created a programmable fiber that can be stitched into clothing to help monitor the wearer’s health.
Full story via FOX 28

MIT Lincoln Lab develops ocean-mapping technology
MIT Lincoln Laboratory researchers are developing “automated electric vessels to map the ocean floor and improve search and rescue missions.”
Full story via Chronicle

Transformative tech

This MIT scientist is rewiring robots to keep the humanity in tech
Professor Daniela Rus, director of the Computer Science and Artificial Intelligence Lab, discusses her work revolutionizing the field of robotics by bringing “empathy into engineering and proving that responsibility is as radical and as commercially attractive as unguarded innovation.”
Full story via Forbes

Watch this tiny robot somersault through the air like an insect
Professor Kevin Chen designed a tiny, insect-sized aerial microrobot.
Full story via Science

It's actually really hard to make a robot, guys
Professor Pulkit Agrawal delves into his work engineering a simulator that can be used to train robots.
Full story via NPR

Shape-shifting fabrics and programmable materials redefine design at MIT
Associate Professor Skylar Tibbits is embedding intelligence into the materials around us, while Professor Caitlin Mueller and Sandy Curth PhD ’25 are digging into eco-friendly construction.
Full story via Chronicle

Building a healthier future

MIT launches pediatric research hub to address access gaps
The Hood Pediatric Innovation Hub is addressing “underinvestment in pediatric healthcare innovations.”
Full story via Boston Business Journal

Bionic knee helps amputees walk naturally again
Professor Hugh Herr developed a prosthetic that could increase mobility for above-the-knee amputees. “The bionic knee developed by MIT doesn’t just restore function, it redefines it.”
Full story via Fox News

MIT drug hunters are using AI to design completely new antibiotics
Professor James Collins is using AI to develop new compounds to combat antibiotic resistance.
Full story via Fast Company

Innovative once-weekly capsule helps quell schizophrenia symptoms
A new pill from the lab of Associate Professor Giovanni Traverso “can greatly simplify the drug schedule faced by schizophrenia patients.”
Full story via Newsmax

Renewing American manufacturing

US manufacturing is in “pretty bad shape.” MIT hopes to change that.
MIT launched the Initiative for New Manufacturing to help “build the tools and talent to shape a more productive and sustainable future for manufacturing.”
Full story via Manufacturing Dive

Giving US manufacturing a boost
Ben Armstrong of the MIT Industrial Performance Center discusses how to reinvigorate manufacturing in America.
Full story via Marketplace

New England companies are sparking an industrial revolution. Here’s how to harness it.
Professor David Mindell spotlights how “a new wave of industrial companies, many in New England, are leveraging new technologies to create jobs and empower workers.”
Full story via The Boston Globe 

Improving aging

My day as an 80-year-old. What an age-simulation suit taught me.
To get a better sense of the experience of aging, Wall Street Journal reporter Amy Dockser Marcus donned the MIT AgeLab’s age-simulation suit and embarked on multiple activities.
Full story via The Wall Street Journal

New mobile robot helps seniors walk safely and prevent falls
A mobile robot created by MIT engineers is designed to help prevent falls. “It's easy to see how something like this could make a big difference for seniors wanting to stay independent.”
Full story via Fox News

The senior population is booming. Caregiving is struggling to keep up
Professor Jonathan Gruber discusses the labor shortages impacting senior care.
Full story via CNBC

Upping our energy resilience

New MIT collaboration with GE Vernova aims to accelerate energy transition
“A great amount of innovation happens in academia. We have a longer view into the future,” says Provost Anantha Chandrakasan of the MIT-GE Vernova Energy and Climate Alliance.
Full story via The Boston Globe

The environmental impacts of generative AI
Noman Bashir, a fellow with MIT’s Climate and Sustainability Consortium, explores the environmental impacts of generative AI.
Full story via Fox 13

Is the clean energy economy doomed?
Professor Christopher Knittel discusses how the U.S. can be in the best position for global energy dominance.
Full story via Marketplace

Advancing American workers

WTH can we do to prevent a second China shock? Professor David Autor explains
Professor David Autor shares his research examining the long-term impact of China entering the World Trade Organization, how the U.S. can protect vital industries from unfair trade practices, and the potential impacts of AI on workers.
Full story via American Enterprise Institute

The fight over robots threatening American jobs
Professor Daron Acemoglu highlights the economic and societal implications of integrating automation in the workforce, advocating for policies aimed at assisting workers.
Full story via Financial Times

Moving toward automation
Research Scientist Eva Ponce of the MIT Center for Transportation and Logistics notes that robotics and AI technologies are “replacing some jobs — particularly more manual tasks including heavy lifting — but have also offered new opportunities within warehouse operations.”
Full story via Financial Times

Planetary defense and out-of-this world exploration

MIT researchers create new asteroid detection methods to help protect Earth
Associate Professor Julien de Wit and Research Scientist Artem Burdanov discuss their work developing a new method to track asteroids that could impact Earth.
Full story via WBZ Radio

What happens to the bodies of NASA astronauts returning to Earth?
Professor Dava Newman speaks about how long-duration stays in space can affect the human body.
Full story via News Nation

Lunar lander Athena is packed and ready to explore the moon. Here’s what on board
MIT engineers sent three payloads into space on a course set for the moon’s south polar region.
Full story via USA Today

Scanning the heavens at the Vatican Observatory
Br. Guy Consolmagno '74, SM '75, director of the Vatican Observatory, and graduate student Isabella Macias share their experiences studying astronomy and planetary formation at the Vatican Observatory. “The Vatican has such a deep, rich history of working with astronomers,” says Macias. “It shows that science is not only for global superpowers around the world, but it's for students, it's for humanity.”
Full story via CBS News Sunday Morning

The story of real-life rocket scientists
Professor Kerri Cahoy takes viewers on an out-of-this-world journey into how a college internship inspired her research on space and satellites.
Full story via Bloomberg Television 

On the air 

While digital currency initiatives expand, we ask: What’s the future of cash?
Neha Narula, director of the MIT Digital Currency Initiative, examines the future of cash as the use of digital currencies expands.
Full story via USA Today

The high stakes of the AI economy
Professor Asu Ozdaglar, head of the Department of Electrical Engineering and Computer Science and deputy dean of the MIT Schwarzman College of Computing, explores AI’s opportunities and risks — and whether it can be regulated without stifling progress.
Full story via Is Business Broken? 

The LIGO Lab is pushing the boundaries of gravitational-wave research
Associate Professor Matt Evans explores the future of gravitational wave research and how Cosmic Explorer, the next-generation gravitational wave observatory, will help unearth secrets of the early universe.
Full story via Scientific American

Space junk: The impact of global warming on satellites
Graduate student Will Parker discusses his research examining the impact of climate change on satellites.
Full story via USA Today

Endometriosis is common. Why is getting diagnosed so hard?
Professor Linda Griffith shares her work studying endometriosis and her efforts to improve healthcare for women.
Full story via Science Friday

There’s nothing small about this nanoscale research
Professor Vladimir Bulović takes listeners on a tour of MIT.nano, MIT’s “clean laboratory facility that is critical to nanoscale research, from microelectronics to medical nanotechnology.”
Full story via Scientific American

Marrying science and athletics

The MIT scientist behind the “torpedo bats” that are blowing up baseball
Aaron Leanhardt PhD ’03 went from an MIT graduate student who was part of a research team that “cooled sodium gas to the lowest temperature ever recorded in human history” to inventor of the torpedo baseball bat, “perhaps the most significant development in bat technology in decades.”
Full story via The Wall Street Journal

Engineering athletes redefine routine
After suffering a concussion during her sophomore year, Emiko Pope ’25 was inspired to explore the effectiveness of concussion headbands.
Full story via American Society of Mechanical Engineers

“I missed talking math with people”: why John Urschel left the NFL for MIT
Assistant Professor John Urschel shares his decision to call an audible and leave his NFL career to focus on his love for math at MIT.
Full story via The Guardian

Making a statement, MIT’s football team dons extra head padding for safety
It’s a piece of equipment that may become more widely used as research continues into its effectiveness — including from at least one of the players on the current team.
Full story via GBH Morning Edition

Agricultural efficiency

New MIT breakthrough could save farmers billions on pesticides
MIT engineers developed a system that helps pesticides adhere more effectively to plant leaves, allowing farmers to use fewer chemicals.
Full story via Michigan Farm News

Bug-sized robots could help pollination on future farms
Insect-sized robots crafted by MIT researchers could one day be used to help with farming practices like artificial pollination.
Full story via Reuters

See how MIT researchers harvest water from the air
An ultrasonic device created by MIT engineers can extract clean drinking water from atmospheric moisture.
Full story via CNN

Appreciating art

Meet the engineer using deep learning to restore Renaissance art
Graduate student Alex Kachkine talks about his work applying AI to develop a restoration method for damaged artwork.
Full story via Nature

MIT’s Linde Music Building opens with a free festival
“The extent of art-making on the MIT campus is equal to that of a major city,” says Institute Professor Marcus Thompson. “It’s a miracle that it’s all right here, by people in science and technology who are absorbed in creating a new world and who also value the past, present and future of music and the arts.”
Full story via Cambridge Day

“Remembering the Future” on display at the MIT Museum
The “Remembering the Future” exhibit at the MIT Museum features a sculptural installation that uses “climate data from the last ice age to the present, as well as projected future environments, to create a geometric design.”
Full story via The New York Times 

MIT community in 2025: A year in review

MIT Latest News - Mon, 12/22/2025 - 5:00pm

In 2025, MIT maintained its standard of community and research excellence amidst a shift in national priorities regarding the federal funding of higher education. Notably, QS ranked MIT No. 1 in the world for the 14th straight year, while U.S. News ranked MIT No. 2 in the nation for the 5th straight year.

This year, President Sally Kornbluth also added to the Institute’s slate of community-wide strategic initiatives, with new collaborative efforts focused on manufacturing, generative artificial intelligence, and quantum science and engineering. In addition, MIT opened several new buildings and spaces, hosted a campuswide art festival, and continued its tradition of bringing the latest in science and technology to the local community and to the world. Here are some of the top stories from around MIT over the past 12 months.

MIT collaboratives

President Kornbluth announced three new Institute-wide collaborative efforts designed to foster and support alliances that will take on global problems. The Initiative for New Manufacturing (INM) will work toward bolstering industry and creating jobs by driving innovation across vital manufacturing sectors. The MIT Generative AI Impact Consortium (MGAIC), a group of industry leaders and MIT researchers, aims to harness the power of generative artificial intelligence for the good of society. And the MIT Quantum Initiative (QMIT) will leverage quantum breakthroughs to drive the future of scientific and technological progress.

These missions join three announced last year — the Climate Project at MIT, the MIT Human Insight Collaborative (MITHIC), and the MIT Health and Life Sciences Collaborative (MIT HEALS).

Sharing the wonders of science and technology

This year saw the launch of MIT Learn, a dynamic AI-enabled website that hosts nearly 13,000 non-degree learning opportunities, making it easier for learners around the world to discover the courses and resources available on MIT’s various learning platforms.

The Institute also hosted the Cambridge Science Carnival, a hands-on event managed by the MIT Museum that drew approximately 20,000 attendees and featured more than 140 activities, demonstrations, and installations tied to the topics of science, technology, engineering, arts, and mathematics (STEAM).

Commencement

At Commencement, Hank Green urged MIT’s newest graduates to focus their work on the “everyday solvable problems of normal people,” even if it is not always the easiest or most obvious course of action. Green is a popular content creator and YouTuber whose work often focuses on science and STEAM issues, and who co-created the educational media company Complexly.

President Kornbluth challenged graduates to be “ambassadors” for the open-minded inquiry and collaborative work that marks everyday life at MIT.

Top accolades

In January, the White House bestowed national medals of science and technology — the country’s highest awards for scientists and engineers — on four MIT professors and an additional alumnus. Moderna, with deep MIT roots, was also recognized.

As in past years, MIT faculty, staff, and alumni were honored with election to the various national academies: the National Academy of Sciences, the National Academy of Engineering, the National Academy of Medicine, and the National Academy of Inventors.

Faculty member Carlo Ratti served as curator of the Venice Biennale’s 19th International Architecture Exhibition.

Members of MIT Video Productions won a New England Emmy Award for their short film on the art and science of hand-forged knives with master bladesmith Bob Kramer.

And at MIT, Dimitris Bertsimas, vice provost for open learning and a professor of operations research, won this year’s Killian Award, the Institute’s highest faculty honor.

New and refreshed spaces

In the heart of campus, the Edward and Joyce Linde Music Building became fully operational to start off the year. In celebration, the Institute hosted Artfinity, a vibrant multiweek exploration of art and ideas, with more than 80 free performing and visual arts events including a film festival, interactive augmented-reality art installations, a simulated lunar landing, and concerts by both student groups and internationally renowned musicians.

Over the summer, the “Outfinite” — the open space connecting Hockfield Court with Massachusetts Avenue — was officially named the L. Rafael Reif Innovation Corridor in honor of President Emeritus L. Rafael Reif, MIT’s 17th president.

And in October, the Undergraduate Advising Center’s bright new home opened in Building 11 along the Infinite Corridor, bringing a welcoming and functional destination for MIT undergraduate students within the Institute’s Main Group.

Student honors and awards

MIT undergraduates earned an impressive number of prestigious awards in 2025. Exceptional students were honored with RhodesGates Cambridge, and Schwarzman scholarships, among others.

A number of MIT student-athletes also helped to secure their team’s first NCAA national championship in Institute history: Women’s track and field won both the indoor national championship and outdoor national championship, while women’s swimming and diving won their national title as well.

Also for the fifth year in a row, MIT students earned all five top spots at the Putnam Mathematical Competition.

Leadership transitions

Several senior administrative leaders took on new roles in 2025. Anantha Chandrakasan was named provost; Paula Hammond was named dean of the School of Engineering; Richard Locke was named dean of the MIT Sloan School of Management; Gaspare LoDuca was named vice president for information systems and technology and CIO; Evelyn Wang was named vice president for energy and climate; and David Darmofal was named vice chancellor for undergraduate and graduate education.

Additional new leadership transitions include: Ana Bakshi was named executive director of the Martin Trust Center for MIT Entrepreneurship; Fikile Brushett was named director of the David H. Koch School of Chemical Engineering Practice; Laurent Demanet was named co-director of the Center for Computational Science and Engineering; Rohit Karnik was named director of the Abdul Latif Jameel Water and Food Systems Lab; Usha Lee McFarling was named director of the Knight Science Journalism Program; C. Cem Tasan was named director of the Materials Research Laboratory; and Jessika Trancik was named director of the Sociotechnical Systems Research Center.

Remembering those we lost

Among MIT community members who died this year were David Baltimore, Juanita Battle, Harvey Kent Bowen, Stanley Fischer, Frederick Greene, Lee Grodzins, John Joannopoulos, Keith Johnson, Daniel Kleppner, Earle Lomon, Nuno Loureiro, Victor K. McElheny, David Schmittlein, Anthony Sinskey, Peter Temin, Barry Vercoe, Rainer Weiss, Alan Whitney, and Ioannis Yannas.

In case you missed it…

Additional top stories from around the Institute in 2025 include a description of the environmental and sustainability implications of generative AI tech and applications; the story of how an MIT professor introduced hundreds of thousands of students to neuroscience with his classic textbook; a look at how MIT entrepreneurs are using AI; a roundup of new books by MIT faculty and staff; and behind the scenes with MIT students who cracked a longstanding egg dilemma

MIT’s top research stories of 2025

MIT Latest News - Mon, 12/22/2025 - 2:00pm

In 2025, MIT’s research community had another prolific year filled with exciting scientific and technological advances. To celebrate the achievements of the past 12 months, MIT News highlights some of our most-read stories from this year.

  • More powerful concrete “batteries”: MIT researchers combined cement, water, ultra-fine carbon black, and electrolytes to create electron-conducting carbon concrete. The researchers say the material could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy.
     
  • Confirming the famous double-slit experiment: Physicists performed an idealized version of one of the most famous experiments in quantum physics, demonstrating with atomic-level precision the dual nature of light. The experiment confirmed that light exists as both a particle and a wave, though that duality cannot be simultaneously observed.
     
  • Periodic table of machine learning: Researchers created a table that reveals connections among more than 20 classical machine-learning algorithms. The table stems from the idea that all algorithms learn a specific kind of relationship between data points. The framework could help scientists fuse different methods to improve existing AI models or come up with new ones.
     
  • Photographing “free range” atoms: Physicists captured the first images of individual atoms freely interacting in space. The experiment used single-atom microscopy and ultracold quantum gases to reveal correlations between the particles that had been predicted but never before observed.
     
  • Pulling drinking water from air: Engineers developed a window-sized device that acts as an atmospheric water harvester to produce fresh water anywhere. The origami-inspired device uses a hydrogel material that swells to absorb water — it even works in Death Valley, California.
     
  • Generative AI versus drug-resistant bacteria: With help from artificial intelligence, researchers designed novel antibiotics that can combat two drug-resistant infections. First, a generative AI algorithm designed more than 35 million compounds. Then, the researchers screened them for antimicrobial properties, discovering drug candidates that are structurally distinct from any existing antibiotics.
     
  • Tracking the ozone recovery: A study confirms the Antarctic ozone layer is healing as a direct result of global efforts to reduce ozone-depleting chlorofluorocarbons — chemicals that were used in refrigeration, air conditioning, insulation, and aerosol propellants.
     
  • First evidence of “proto Earth”: Scientists discovered extremely rare remnants of an early version of our planet that formed about 4.5 billion years ago, before a colossal collision irreversibly altered its composition and produced the Earth as we know today. The findings will help scientists piece together the primordial starting ingredients that forged early Earth and the rest of the solar system.
     
  • Restoring movement with a bionic knee: Researchers developed a bionic knee that can help people with above-the-knee amputations walk faster, climb stairs, and avoid obstacles. In a small study, users navigated more easily and said the limb felt more like a part of their body compared to traditional prostheses.
     
  • How people walk in crowds: Mathematicians studied the flow of human crowds and developed a first-of-its-kind way to predict when pedestrian paths will transition from orderly to entangled. The findings could help inform the design of public spaces and promote safe and efficient thoroughfares.

3 Questions: How to launch a successful climate and energy venture

MIT Latest News - Mon, 12/22/2025 - 12:30pm

In 2013, Martin Trust Center for MIT Entrepreneurship Managing Director Bill Aulet published “Disciplined Entrepreneurship: 24 Steps to a Successful Startup,” which has since sold hundreds of thousands of copies and been used to teach entrepreneurship at universities around the world. One MIT course where it’s used is 15.366 (Climate and Energy Ventures), where instructors have tweaked the framework over the years. In a new book, “Disciplined Entrepreneurship for Climate and Energy Ventures,” they codify those changes and provide a new blueprint for entrepreneurs working in the climate and energy spaces.

MIT News spoke with lead author and Trust Center Entrepreneur-in-Residence Ben Soltoff, who wrote the book with Aulet, Senior Lecturer Tod Hynes, Senior Lecturer Francis O’Sullivan, and Lecturer Libby Wayman. Soltoff explains why climate and energy entrepreneurship is so challenging and talks about some of the new steps in the book.

Q: What are climate and energy ventures?

A: It’s a broad umbrella. These ventures aren’t all in a specific industry or structured in the same way. They could be software, they could be hardware, or they could be deep tech coming out of labs. This book is also written for people working in government, large corporations, or nonprofits. Each of those folks can benefit from the entrepreneurial framework in this book. We very intentionally refer to them as climate and energy ventures in the book, not just climate and energy startups.

One common theme is meeting the challenge of providing enough energy for current and future needs without exacerbating, or even while reducing, the impact we have on our planet. Generally, climate and energy ventures are less likely to be only software. Many of the solutions we need are around molecules, not bits. A lot of it is breakthrough technology and science from research labs. You could be making a useful fuel, removing CO2 from the atmosphere, or delivering something in a novel way. Your venture might produce a chemical or molecule that’s already being provided and is a commodity. It needs to be not only more sustainable, but better for your customers — either cheaper, more reliable, or more securely delivered. Ultimately, all of these ventures have to provide value. They also often involve physical infrastructure that you have to scale up — not just 10 times or 100 times, but 1,000 times or more — from original lab demonstrations.

Q: How should climate and energy entrepreneurs be thinking about navigating financing and working with the government?

A: One of the major themes of the book is the importance of figuring out if policy is in your favor and constantly applying a policy lens to what you’re building. Finance is another major theme. In climate and energy, these things are fundamental, and we need to consider them from the beginning. We talk about different “valleys of death” — the idea that going from one stage to the next stage requires this jump in time and resources that presents a big challenge. That also relates to the jump in scale of the technology, from a lab scale to something you can produce and sell in a quantity and at a cost the market is interested in. All of that requires financing.

At an early stage, a lot of these ventures are funded through grants and research funding. Later, they start getting early-stage capital — often venture capital. Eventually, as folks are scaling, they move to debt and project financing. Companies need to be very intentional about the type of financing they’re going to pursue and at what stage. We have an entire step on creating a long-term capital plan. Entrepreneurs need to be very clear about the story they’re going to tell investors at different stages. Otherwise, they can paint themselves into a corner and fail to build a company for the next stage of capital they need.

In terms of policy, entrepreneurs should use the policy environment as a filter for selecting a market. We have a story in the book about a startup that switched from working in sub-Saharan Africa to the U.S. after the Inflation Reduction Act passed. As those incentives began disappearing, they still had the option to return to their original market. It’s not ideal for them, but they are still able to build profitable projects. You shouldn’t build a company based on the incentives alone, but you should understand which way the wind is blowing and take advantage of policy when it’s in your favor. That said, policy can always change.

Q: How should climate and energy entrepreneurs select the right market “stepping stones”?

A: Each of the “Disciplined Entrepreneurship” books talks about the importance of selecting customers and listening to your customers. When thinking about their beachhead market, or where to initially focus, climate and energy entrepreneurs need to look for the easiest near-term opportunity to plug in their technology. Subsequent market selection is also driven by technology. Instead of just picking a beachhead market and figuring everything else out later, there often needs to be an intentional choice of what we call market stepping stones. You start by focusing on an initial market in the early days — land and expand — but there needs to be a long-term strategy, so you don’t go down a dead end. These ventures don’t have a lot of flexibility as they build out potentially expensive technologies. Being intentional means having a pathway planned from the beachhead market up to the big prize that makes the entire enterprise worthwhile. The prize means having a big impact but also targeting a big market opportunity.

We have an example in the book of a company that can turn CO2 into useful products. They knew the big prize was turning it into fuel, most likely aviation fuel, but they couldn’t produce at the right volume or cost early on, so they looked at other applications. They started with making vodka from CO2 because it was low-volume and high-margin. Then the pandemic happened, so they made hand sanitizer. Then they made perfume, which had the highest margins of all. By that point, they were ready to start moving into the fuel market. The stepping stones are about figuring out who is willing to buy the simple version of your technology or product and pay a premium. Initially, looking at that company, you might say, “They’re not going to save the planet by selling vodka.” But it was a critical stepping stone to get to the big prize. Long-term thinking is essential for ventures in this space.

Microsoft Is Finally Killing RC4

Schneier on Security - Mon, 12/22/2025 - 12:05pm

After twenty-six years, Microsoft is finally upgrading the last remaining instance of the encryption algorithm RC4 in Windows.

of the most visible holdouts in supporting RC4 has been Microsoft. Eventually, Microsoft upgraded Active Directory to support the much more secure AES encryption standard. But by default, Windows servers have continued to respond to RC4-based authentication requests and return an RC4-based response. The RC4 fallback has been a favorite weakness hackers have exploited to compromise enterprise networks. Use of RC4 played a ...

Study: High-fat diets make liver cells more likely to become cancerous

MIT Latest News - Mon, 12/22/2025 - 11:00am

One of the biggest risk factors for developing liver cancer is a high-fat diet. A new study from MIT reveals how a fatty diet rewires liver cells and makes them more prone to becoming cancerous.

The researchers found that in response to a high-fat diet, mature hepatocytes in the liver revert to an immature, stem-cell-like state. This helps them to survive the stressful conditions created by the high-fat diet, but in the long term, it makes them more likely to become cancerous.

“If cells are forced to deal with a stressor, such as a high-fat diet, over and over again, they will do things that will help them survive, but at the risk of increased susceptibility to tumorigenesis,” says Alex K. Shalek, director of the Institute for Medical Engineering and Sciences (IMES), the J. W. Kieckhefer Professor in IMES and the Department of Chemistry, and a member of the Koch Institute for Integrative Cancer Research at MIT, the Ragon Institute of MGH, MIT, and Harvard, and the Broad Institute of MIT and Harvard.

The researchers also identified several transcription factors that appear to control this reversion, which they believe could make good targets for drugs to help prevent tumor development in high-risk patients.

Shalek; Ömer Yilmaz, an MIT associate professor of biology and a member of the Koch Institute; and Wolfram Goessling, co-director of the Harvard-MIT Program in Health Sciences and Technology, are the senior authors of the study, which appears today in Cell. MIT graduate student Constantine Tzouanas, former MIT postdoc Jessica Shay, and Massachusetts General Brigham postdoc Marc Sherman are the co-first authors of the paper.

Cell reversion

A high-fat diet can lead to inflammation and buildup of fat in the liver, a condition known as steatotic liver disease. This disease, which can also be caused by a wide variety of long-term metabolic stresses such as high alcohol consumption, may lead to liver cirrhosis, liver failure, and eventually cancer.

In the new study, the researchers wanted to figure out just what happens in cells of the liver when exposed to a high-fat diet — in particular, which genes get turned on or off as the liver responds to this long-term stress.

To do that, the researchers fed mice a high-fat diet and performed single-cell RNA-sequencing of their liver cells at key timepoints as liver disease progressed. This allowed them to monitor gene expression changes that occurred as the mice advanced through liver inflammation, to tissue scarring and eventually cancer.

In the early stages of this progression, the researchers found that the high-fat diet prompted hepatocytes, the most abundant cell type in the liver, to turn on genes that help them survive the stressful environment. These include genes that make them more resistant to apoptosis and more likely to proliferate.

At the same time, those cells began to turn off some of the genes that are critical for normal hepatocyte function, including metabolic enzymes and secreted proteins.

“This really looks like a trade-off, prioritizing what’s good for the individual cell to stay alive in a stressful environment, at the expense of what the collective tissue should be doing,” Tzouanas says.

Some of these changes happened right away, while others, including a decline in metabolic enzyme production, shifted more gradually over a longer period. Nearly all of the mice on a high-fat diet ended up developing liver cancer by the end of the study.

When cells are in a more immature state, it appears that they are more likely to become cancerous if a mutation occurs later on, the researchers say.

“These cells have already turned on the same genes that they’re going to need to become cancerous. They’ve already shifted away from the mature identity that would otherwise drag down their ability to proliferate,” Tzouanas says. “Once a cell picks up the wrong mutation, then it’s really off to the races and they’ve already gotten a head start on some of those hallmarks of cancer.”

The researchers also identified several genes that appear to orchestrate the changes that revert hepatocytes to an immature state. While this study was going on, a drug targeting one of these genes (thyroid hormone receptor) was approved to treat a severe form of steatotic liver disease called MASH fibrosis. And, a drug activating an enzyme that they identified (HMGCS2) is now in clinical trials to treat steatotic liver disease.

Another possible target that the new study revealed is a transcription factor called SOX4, which is normally only active during fetal development and in a small number of adult tissues (but not the liver).

Cancer progression

After the researchers identified these changes in mice, they sought to discover if something similar might be happening in human patients with liver disease. To do that, they analyzed data from liver tissue samples removed from patients at different stages of the disease. They also looked at tissue from people who had liver disease but had not yet developed cancer.

Those studies revealed a similar pattern to what the researchers had seen in mice: The expression of genes needed for normal liver function decreased over time, while genes associated with immature states went up. Additionally, the researchers found that they could accurately predict patients’ survival outcomes based on an analysis of their gene expression patterns.

“Patients who had higher expression of these pro-cell-survival genes that are turned on with high-fat diet survived for less time after tumors developed,” Tzouanas says. “And if a patient has lower expression of genes that support the functions that the liver normally performs, they also survive for less time.”

While the mice in this study developed cancer within a year or so, the researchers estimate that in humans, the process likely extends over a longer span, possibly around 20 years. That will vary between individuals depending on their diet and other risk factors such as alcohol consumption or viral infections, which can also promote liver cells’ reversion to an immature state.

The researchers now plan to investigate whether any of the changes that occur in response to a high-fat diet can be reversed by going back to a normal diet, or by taking weight-loss drugs such as GLP-1 agonists. They also hope to study whether any of the transcription factors they identified could make good targets for drugs that could help prevent diseased liver tissue from becoming cancerous.

“We now have all these new molecular targets and a better understanding of what is underlying the biology, which could give us new angles to improve outcomes for patients,” Shalek says.

The research was funded, in part, by a Fannie and John Hertz Foundation Fellowship, a National Science Foundation Graduate Research Fellowship, the National Institutes of Health, and the MIT Stem Cell Initiative through Foundation MIT.

Study: More eyes on the skies will help planes reduce climate-warming contrails

MIT Latest News - Mon, 12/22/2025 - 10:00am

Aviation’s climate impact is partly due to contrails — condensation that a plane streaks across the sky when it flies through icy and humid layers of the atmosphere. Contrails trap heat that radiates from the planet’s surface, and while the magnitude of this impact is uncertain, several studies suggest contrails may be responsible for about half of aviation’s climate impact.

Pilots could conceivably reduce their planes’ climate impact by avoiding contrail-prone regions, similarly to making altitude adjustments to avoid turbulence. But to do so requires knowing where in the sky contrails are likely to form.

To make these predictions, scientists are studying images of contrails that have formed in the past. Images taken by geostationary satellites are one of the main tools scientists use to develop contrail identification and avoidance systems. 

But a new study shows there are limits to what geostationary satellites can see. MIT engineers analyzed contrail images taken with geostationary satellites, and compared them with images of the same areas taken by low-Earth-orbiting (LEO) satellites. LEO satellites orbit the Earth at lower altitudes and therefore can capture more detail. However, since LEO satellites only snap an image as they fly by, they capture images of the same area far less frequently than geostationary (GEO) satellites, which continuously image the same region of the Earth every few minutes.

The researchers found that geostationary satellites miss about 80 percent of the contrails that appear in LEO imagery. Geostationary satellites mainly see larger contrails that have had time to grow and spread across the atmosphere. The many more contrails that LEO satellites can pick up are often shorter and thinner. These finer threads likely formed immediately from a plane’s engines and are still too small or otherwise not distinct enough for geostationary satellites to discern.

The study highlights the need for a multiobservational approach in developing contrail identification and avoidance systems. The researchers emphasize that both GEO and LEO satellite images have their strengths and limitations. Observations from both sources, as well as images taken from the ground, could provide a more complete picture of contrails and how they evolve.

“With more ‘eyes’ on the sky, we could start to see what a contrail’s life looks like,” says Prakash Prashanth, a research scientist in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “Then you can understand what are its radiative properties over its entire life, and when and why a contrail is climatically important.”

The new study appears today in the journal Geophysical Research Letters. The study’s MIT co-authors include first author Marlene Euchenhofer, a graduate student in AeroAstro; Sydney Parke, an undergraduate student; Ian Waitz, the Jerome C. Hunsaker Professor of Aeronautics and Astronautics and MIT’s vice president of research; and Sebastian Eastham of Imperial College London.

Imaging backbone

Contrails form when the exhaust from planes meets icy, humid air, and the particles from the exhaust act as seeds on which water vapor collects and freezes into ice crystals. As a plane moves forward, it leaves a trail of condensation in its wake that starts as a thin thread that can grow and spread over large distances, lasting for several hours before dissipating.

When it persists, a contrail acts similar to an ice cloud and, as such, can have two competing effects: one in which the contrail is a sort of heat shield, reflecting some incoming radiation from the sun. On the other hand, a contrail can also act as a blanket, absorbing and reflecting back some of the heat from the surface. During the daytime, when the sun is shining, contrails can have both heat shielding and trapping effects. At night, the cloud-like threads have only a trapping, warming effect. On balance, studies have shown that contrails as a whole contribute to warming the planet.

There are multiple efforts underway to develop and test aircraft contrail-avoidance systems to reduce aviation’s climate-warming impact. And scientists are using images of contrails from space to help inform those systems.

“Geostationary satellite images are the workhorse of observations for detecting contrails,” says Euchenhofer. “Because they are at 36,000 kilometers above the surface, they can cover a wide area, and they look at the same point day and night so you can get new images of the same location every five minutes.”

But what they bring in rate and coverage, geostationary satellites lack in clarity. The images they take are about one-fifth the resolution of those taken by LEO satellites. This wouldn’t be a surprise to most scientists. But Euchenhofer wondered how different the geostationary and LEO contrail pictures would look, and what opportunities there might be to improve the picture if both sources could be combined.

“We still think geostationary satellites are the backbone of observation-based avoidance because of the spatial coverage and the high frequency at which we get an image,” she says. “We think that the data could be enhanced if we include observations from LEO and other data sources like ground-based cameras.”

Catching the trail

In their new study, the researchers analyzed contrail images from two satellite imagers: the Advanced Baseline Imager (ABI) aboard a geostationary satellite that is typically used to observe contrails and the higher-resolution Visible Infrared Radiometer Suite (VIIRS), an instrument onboard several LEO satellites.

For each month from December 2023 to November 2024, the team picked out an image of the contiguous United States taken by VIIRS during its flyby. They found corresponding images of the same location, taken at about the same time of day by the geostationary ABI. The images were taken in the infrared spectrum and represented in false color, which enabled the researchers to more easily identify contrails that formed during both the day and night. The researchers then worked by eye, zooming in on each image to identify, outline, and label each contrail they could see.

When they compared the images, they found that GEO images missed about 80 percent of the contrails observed in the LEO images. They also assessed the length and width of contrails in each image and found that GEO images mostly captured larger and longer contrails, while LEO images could also discern shorter, smaller contrails.

“We found 80 percent of the contrails we could see with LEO satellites, we couldn’t see with GEO imagers,” says Prashanth, who is the executive officer of MIT’s Laboratory for Aviation and the Environment. “That does not mean that 80 percent of the climate impact wasn’t captured. Because the contrails we see with GEO imagers are the bigger ones that likely have a bigger climate effect.”

Still, the study highlights an opportunity.

“We want to make sure this message gets across: Geostationary imagers are extremely powerful in terms of the spatial extent they cover and the number of images we can get,” Euchenhofer says. “But solely relying on one instrument, especially when policymaking comes into play, is probably too incomplete a picture to inform science and also airlines regarding contrail avoidance. We really need to fill this gap with other sensors.”

The team says other sensors could include networks of cameras on the ground that under ideal conditions can spot contrails as planes form them in real time. These smaller, “younger” contrails are typically missed by geostationary satellites. Once scientists have these ground-based data, they can match the contrail to the plane and use the plane’s flight data to identify the exact altitude at which the contrail appears. They could then track the contrail as it grows and spreads through the atmosphere, using geostationary images. Eventually, with enough data, scientists could develop an accurate forecasting model, in real time, to predict whether a plane is heading toward a region where contrails might form and persist, and how it could change its altitude to avoid the region.

“People see contrail avoidance as a near-term and cheap opportunity to attack one of the hardest-to-abate sectors in transportation,” Prashanth says. “We don’t have a lot of easy solutions in aviation to reduce our climate impact. But it is premature to do so until we have better tools to determine where in the atmosphere contrails will form, to understand their relative impacts and to verify avoidance outcomes. We have to do this in a careful and rigorous manner, and this is where a lot of these pieces come in.”

This work was supported, in part, by the U.S. Federal Aviation Administration Office of Environment and Energy.

Anything-goes “anyons” may be at the root of surprising quantum experiments

MIT Latest News - Mon, 12/22/2025 - 10:00am

In the past year, two separate experiments in two different materials captured the same confounding scenario: the coexistence of superconductivity and magnetism. Scientists had assumed that these two quantum states are mutually exclusive; the presence of one should inherently destroy the other.

Now, theoretical physicists at MIT have an explanation for how this Jekyll-and-Hyde duality could emerge. In a paper appearing today in the Proceedings of the National Academy of Sciences, the team proposes that under certain conditions, a magnetic material’s electrons could splinter into fractions of themselves to form quasiparticles known as “anyons.” In certain fractions, the quasiparticles should flow together without friction, similar to how regular electrons can pair up to flow in conventional superconductors.

If the team’s scenario is correct, it would introduce an entirely new form of superconductivity — one that persists in the presence of magnetism and involves a supercurrent of exotic anyons rather than everyday electrons.

“Many more experiments are needed before one can declare victory,” says study lead author Senthil Todadri, the William and Emma Rogers Professor of Physics at MIT. “But this theory is very promising and shows that there can be new ways in which the phenomenon of superconductivity can arise.”

What’s more, if the idea of superconducting anyons can be confirmed and controlled in other materials, it could provide a new way to design stable qubits — atomic-scale “bits” that interact quantum mechanically to process information and carry out complex computations far more efficiently than conventional computer bits.

“These theoretical ideas, if they pan out, could make this dream one tiny step within reach,” Todadri says.

The study’s co-author is MIT physics graduate student Zhengyan Darius Shi.

“Anything goes”

Superconductivity and magnetism are macroscopic states that arise from the behavior of electrons. A material is a magnet when electrons in its atomic structure have roughly the same spin, or orbital motion, creating a collective pull in the form of a magnetic field within the material as a whole. A material is a superconductor when electrons passing through, in the form of voltage, can couple up in “Cooper pairs.” In this teamed-up state, electrons can glide through a material without friction, rather than randomly knocking against its atomic latticework.

For decades, it was thought that superconductivity and magnetism should not co-exist; superconductivity is a delicate state, and any magnetic field can easily sever the bonds between Cooper pairs. But earlier this year, two separate experiments proved otherwise. In the first experiment, MIT’s Long Ju and his colleagues discovered superconductivity and magnetism in rhombohedral graphene — a synthesized material made from four or five graphene layers.

“It was electrifying,” says Todadri, who recalls hearing Ju present the results at a conference. “It set the place alive. And it introduced more questions as to how this could be possible.”

Shortly after, a second team reported similar dual states in the semiconducting crystal molybdenium ditelluride (MoTe2). Interestingly, the conditions in which MoTe2 becomes superconductive happen to be the same conditions in which the material exhibits an exotic “fractional quantum anomalous Hall effect,” or FQAH — a phenomenon in which any electron passing through the material should split into fractions of itself. These fractional quasiparticles are known as “anyons.”

Anyons are entirely different from the two main types of particles that make up the universe: bosons and fermions. Bosons are the extroverted particle type, as they prefer to be together and travel in packs. The photon is the classic example of a boson. In contrast, fermions prefer to keep to themselves, and repel each other if they are too near. Electrons, protons, and neutrons are examples of fermions. Together, bosons and fermions are the two major kingdoms of particles that make up matter in the three-dimensional universe.

Anyons, in contrast, exist only in two-dimensional space. This third type of particle was first predicted in the 1980s, and its name was coined by MIT’s Frank Wilczek, who meant it as a tongue-in-cheek reference to the idea that, in terms of the particle’s behavior, “anything goes.”

A few years after anyons were first predicted, physicists such as Robert Laughlin PhD ’79, Wilczek, and others also theorized that, in the presence of magnetism, the quasiparticles should be able to superconduct.

“People knew that magnetism was usually needed to get anyons to superconduct, and they looked for magnetism in many superconducting materials,” Todadri says. “But superconductivity and magnetism typically do not occur together. So then they discarded the idea.”

But with the recent discovery that the two states can, in fact, peacefully coexist in certain materials, and in MoTe2 in particular, Todadri wondered: Could the old theory, and superconducting anyons, be at play?

Moving past frustration

Todadri and Shi set out to answer that question theoretically, building on their own recent work. In their new study, the team worked out the conditions under which superconducting anyons could emerge in a two-dimensional material. To do so, they applied equations of quantum field theory, which describes how interactions at the quantum scale, such as the level of individual anyons, can give rise to macroscopic quantum states, such as superconductivity. The exercise was not an intuitive one, since anyons are known to stubbornly resist moving, let alone superconducting, together.

“When you have anyons in the system, what happens is each anyon may try to move, but it’s frustrated by the presence of other anyons,” Todadri explains. “This frustration happens even if the anyons are extremely far away from each other. And that’s a purely quantum mechanical effect.”

Even so, the team looked for conditions in which anyons might break out of this frustration and move as one macroscopic fluid. Anyons are formed when electrons splinter into fractions of themselves under certain conditions in two-dimensional, single-atom-thin materials, such as MoTe2. Scientists had previously observed that MoTe2 exhibits the FQAH, in which electrons fractionalize, without the help of an external magnetic field.

Todadri and Shi took MoTe2 as a starting point for their theoretical work. They modeled the conditions in which the FQAH phenomenon emerged in MoTe2, and then looked to see how electrons would splinter, and what types of anyons would be produced, as they theoretically increased the number of electrons in the material.

They noted that, depending on the material’s electron density, two types of anyons can form: anyons with either 1/3 or 2/3 the charge of an electron. They then applied equations of quantum field theory to work out how either of the two anyon types would interact, and found that when the anyons are mostly of the 1/3 flavor, they are predictably frustrated, and their movement leads to ordinary metallic conduction. But when anyons are mostly of the 2/3 flavor, this particular fraction encourages the normally stodgy anyons to instead move collectively to form a superconductor, similar to how electrons can pair up and flow in conventional superconductors.

“These anyons break out of their frustration and can move without friction,” Todadri says. “The amazing thing is, this is an entirely different mechanism by which a superconductor can form, but in a way that can be described as Cooper pairs in any other system.”

Their work revealed that superconducting anyons can emerge at certain electron densities. What’s more, they found that when superconducting anyons first emerge, they do so in a totally new pattern of swirling supercurrents that spontaneously appear in random locations throughout the material. This behavior is distinct from conventional superconductors and is an exotic state that experimentalists can look for as a way to confirm the team’s theory. If their theory is correct, it would introduce a new form of superconductivity, through the quantum interactions of anyons.

“If our anyon-based explanation is what is happening in MoTe2, it opens the door to the study of a new kind of quantum matter which may be called ‘anyonic quantum matter,’” Todadri says. “This will be a new chapter in quantum physics.”

This research was supported, in part, by the National Science Foundation. 

It’s the gold standard of US climate research. Contrarians could write the next one.

ClimateWire News - Mon, 12/22/2025 - 6:54am
Researchers who have downplayed the threat of global warming have been asked to author the next National Climate Assessment.

Trump rejects disaster aid for Colorado despite significant damage

ClimateWire News - Mon, 12/22/2025 - 6:52am
"There is no politicization," White House says after simultaneously denying two requests from Gov. Jared Polis to help rebuild from wildfires and flooding.

Electricity rates a potent political issue ahead of 2026 midterms

ClimateWire News - Mon, 12/22/2025 - 6:51am
Utility rate cases in battleground states will shine a spotlight on utility regulators as cost-of-living issues grab headlines in a big election year.

Dallas suburbs could decide fate of region’s mass transit system

ClimateWire News - Mon, 12/22/2025 - 6:51am
A handful of communities are looking to exit the Dallas Area Rapid Transit (DART) authority at a time when the local population is booming.

California faces one of its worst snow droughts since 2001

ClimateWire News - Mon, 12/22/2025 - 6:47am
Limited snow spurs wildfires, future drought and low reservoir levels.

Czech climate policy gutted by minister who vowed ‘green blood will run’

ClimateWire News - Mon, 12/22/2025 - 6:47am
The new government plans to rewrite Czechia’s green rules.

Cat bonds linked to wildfires lose ‘once untouchable’ status

ClimateWire News - Mon, 12/22/2025 - 6:45am
More than $5 billion of catastrophe bonds with some level of exposure to wildfire risk were issued by insurers and sold to investors this year, according to a specialist in insurance-linked securities.

Green industrial policy is not enough for net-zero decarbonization

Nature Climate Change - Mon, 12/22/2025 - 12:00am

Nature Climate Change, Published online: 22 December 2025; doi:10.1038/s41558-025-02514-8

Both green industrial policy (‘carrots’) and carbon pricing (‘sticks’) are seen as important instruments for decarbonization, but the sequencing strategy matters. Researchers now demonstrate that carrots alone — without sticks — are unlikely to reach long-term net-zero targets in the USA.

Modelling the impacts of policy sequencing on energy decarbonization

Nature Climate Change - Mon, 12/22/2025 - 12:00am

Nature Climate Change, Published online: 22 December 2025; doi:10.1038/s41558-025-02497-6

Green subsidies (carrots) are now becoming a more politically acceptable climate policy option compared with corrective regulations (sticks). However, researcher show that carrots without quick and appropriate sticks will not be sufficient to reach the deep decarbonization goal in the long run.

Impacts of global warming on subnational poverty and inequality

Nature Climate Change - Mon, 12/22/2025 - 12:00am

Nature Climate Change, Published online: 22 December 2025; doi:10.1038/s41558-025-02516-6

In addition to affecting general economic indicators, climate change could worsen poverty and inequality across and within countries. With a global subnational dataset, researchers confirm that temperature rise leads to increases in headcount poverty and the Gini index, with poorer countries being particularly vulnerable.

Friday Squid Blogging: Petting a Squid

Schneier on Security - Fri, 12/19/2025 - 5:06pm

Video from Reddit shows what could go wrong when you try to pet a—looks like a Humboldt—squid.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Blog moderation policy.

Pages