Feed aggregator
Nations got better at cutting carbon. So why are emissions rising?
Shutdown keeps lawmakers’ COP30 plans in flux
Youth fight their climate court loss
Von der Leyen tries to appease EU climate target skeptics
Fungi-based panels offer sustainable building material for Kenya
Why eating a burger in Houston is less climate-friendly than in Chicago
BlackRock’s GIP joins Exxon in backing new CO2 accounting model
MIT Maritime Consortium releases “Nuclear Ship Safety Handbook”
Commercial shipping accounts for 3 percent of all greenhouse gas emissions globally. As the sector sets climate goals and chases a carbon-free future, nuclear power — long used as a source for military vessels — presents an enticing solution. To date, however, there has been no clear, unified public document available to guide design safety for certain components of civilian nuclear ships. A new “Nuclear Ship Safety Handbook” by the MIT Maritime Consortium aims to change that and set the standard for safe maritime nuclear propulsion.
“This handbook is a critical tool in efforts to support the adoption of nuclear in the maritime industry,” explains Themis Sapsis, the William I. Koch Professor of Mechanical Engineering at MIT, director of the MIT Center for Ocean Engineering, and co-director of the MIT Maritime Consortium. “The goal is to provide a strong basis for initial safety on key areas that require nuclear and maritime regulatory research and development in the coming years to prepare for nuclear propulsion in the maritime industry.”
Using research data and standards, combined with operational experiences during civilian maritime nuclear operations, the handbook provides unique insights into potential issues and resolutions in the design efficacy of maritime nuclear operations, a topic of growing importance on the national and international stage.
“Right now, the nuclear-maritime policies that exist are outdated and often tied only to specific technologies, like pressurized water reactors,” says Jose Izurieta, a graduate student in the Department of Mechanical Engineering (MechE) Naval Construction and Engineering (2N) Program, and one of the handbook authors. “With the recent U.K.-U.S. Technology Prosperity Deal now including civil maritime nuclear applications, I hope the handbook can serve as a foundation for creating a clear, modern regulatory framework for nuclear-powered commercial ships.”
The recent memorandum of understanding signed by the U.S. and U.K calls for the exploration of “novel applications of advanced nuclear energy, including civil maritime applications,” and for the parties to play “a leading role informing the establishment of international standards, potential establishment of a maritime shipping corridor between the Participants’ territories, and strengthening energy resilience for the Participants’ defense facilities.”
“The U.S.-U.K. nuclear shipping corridor offers a great opportunity to collaborate with legislators on establishing the critical framework that will enable the United States to invest on nuclear-powered merchant vessels — an achievement that will reestablish America in the shipbuilding space,” says Fotini Christia, the Ford International Professor of the Social Sciences, director of the Institute for Data, Systems, and Society (IDSS), director of the MIT Sociotechnical Systems Research Center, and co-director of the MIT Maritime Consortium.
“With over 30 nations now building or planning their first reactors, nuclear energy’s global acceptance is unprecedented — and that momentum is key to aligning safety rules across borders for nuclear-powered ships and the respective ports,” says Koroush Shirvan, the Atlantic Richfield Career Development Professor in Energy Studies at MIT and director of the Reactor Technology Course for Utility Executives.
The handbook, which is divided into chapters in areas involving the overlapping nuclear and maritime safety design decisions that will be encountered by engineers, is careful to balance technical and practical guidance with policy considerations.
Commander Christopher MacLean, MIT associate professor of the practice in mechanical engineering, naval construction, and engineering, says the handbook will significantly benefit the entire maritime community, specifically naval architects and marine engineers, by providing standardized guidelines for design and operation specific to nuclear powered commercial vessels.
“This will assist in enhancing safety protocols, improve risk assessments, and ensure consistent compliance with international regulations,” MacLean says. “This will also help foster collaboration amongst engineers and regulators. Overall, this will further strengthen the reliability, sustainability, and public trust in nuclear-powered maritime systems.”
Anthony Valiaveedu, the handbook’s lead author, and co-author Nat Edmonds, are both students in the MIT Master’s Program in Technology and Policy (TPP) within the IDSS. The pair are also co-authors of a paper published in Science Policy Review earlier this year that offered structured advice on the development of nuclear regulatory policies.
“It is important for safety and technology to go hand-in-hand,” Valiaveedu explains. “What we have done is provide a risk-informed process to begin these discussions for engineers and policymakers.”
“Ultimately, I hope this framework can be used to build strong bilateral agreements between nations that will allow nuclear propulsion to thrive,” says fellow co-author Izurieta.
Impact on industry
“Maritime designers needed a source of information to improve their ability to understand and design the reactor primary components, and development of the 'Nuclear Ship Safety Handbook' was a good step to bridge this knowledge gap,” says Christopher J. Wiernicki, American Bureau of Shipping (ABS) chair and CEO. “For this reason, it is an important document for the industry.”
The ABS, which is the American classification society for the maritime industry, develops criteria and provides safety certification for all ocean-going vessels. ABS is among the founding members of the MIT Maritime Consortium. Capital Clean Energy Carriers Corp., HD Korea Shipbuilding and Offshore Engineering, and Delos Navigation Ltd. are also consortium founding members. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.
“As we consider a net-zero framework for the shipping industry, nuclear propulsion represents a potential solution. Careful investigation remains the priority, with safety and regulatory standards at the forefront,” says Jerry Kalogiratos, CEO of Capital Clean Energy Carriers Corp. “As first movers, we are exploring all options. This handbook lays the technical foundation for the development of nuclear-powered commercial vessels.”
Sangmin Park, senior vice president at HD Korea Shipbuilding and Offshore Engineering, says “The 'Nuclear Ship Safety Handbook' marks a groundbreaking milestone that bridges shipbuilding excellence and nuclear safety. It drives global collaboration between industry and academia, and paves the way for the safe advancement of the nuclear maritime era.”
Maritime at MIT
MIT has been a leading center of ship research and design for over a century, with work at the Institute today representing significant advancements in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. Maritime Consortium projects, including the handbook, reflect national priorities aimed at revitalizing the U.S. shipbuilding and commercial maritime industries.
The MIT Maritime Consortium, which launched in 2024, brings together MIT and maritime industry leaders to explore data-powered strategies to reduce harmful emissions, optimize vessel operations, and support economic priorities.
“One of our most important efforts is the development of technologies, policies, and regulations to make nuclear propulsion for commercial ships a reality,” says Sapsis. “Over the last year, we have put together an interdisciplinary team with faculty and students from across the Institute. One of the outcomes of this effort is this very detailed document providing detailed guidance on how such effort should be implemented safely.”
Handbook contributors come from multiple disciplines and MIT departments, labs, and research centers, including the Center for Ocean Engineering, IDSS, MechE’s Course 2N Program, the MIT Technology and Policy Program, and the Department of Nuclear Science and Engineering.
MIT faculty members and research advisors on the project include Sapsis; Christia; Shirvan; MacLean; Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering, director, Center for Advanced Nuclear Energy Systems, and director of science and technology for the Nuclear Reactor Laboratory; and Captain Andrew Gillespy, professor of the practice and director of the Naval Construction and Engineering (2N) Program.
“Proving the viability of nuclear propulsion for civilian ships will entail getting the technologies, the economics and the regulations right,” says Buongiorno. “This handbook is a meaningful initial contribution to the development of a sound regulatory framework.”
“We were lucky to have a team of students and knowledgeable professors from so many fields,” says Edmonds. “Before even beginning the outline of the handbook, we did significant archival and history research to understand the existing regulations and overarching story of nuclear ships. Some of the most relevant documents we found were written before 1975, and many of them were stored in the bellows of the NS Savannah.”
The NS Savannah, which was built in the late 1950s as a demonstration project for the potential peacetime uses of nuclear energy, was the first nuclear-powered merchant ship. The Savannah was first launched on July 21, 1959, two years after the first nuclear-powered civilian vessel, the Soviet ice-breaker Lenin, and was retired in 1971.
Historical context for this project is important, because the reactor technologies envisioned for maritime propulsion today are quite different from the traditional pressurized water reactors used by the U.S. Navy. These new reactors are being developed not just in the maritime context, but also to power ports and data centers on land; they all use low-enriched uranium and are passively cooled. For the maritime industry, Sapsis says, “the technology is there, it’s safe, and it’s ready.”
“The Nuclear Ship Safety Handbook” is publicly available on the MIT Maritime Consortium website and from the MIT Libraries.
No Tricks, Just Treats 🎃 EFF’s Halloween Signal Stickers Are Here!
EFF usually warns of new horrors threatening your rights online, but this Halloween we’ve summoned a few of our own we’d like to share. Our new Signal Sticker Pack highlights some creatures—both mythical and terrifying—conjured up by our designers for you to share this spooky season.
If you’re new to Signal, it's a free and secure messaging app built by the nonprofit Signal Foundation at the forefront of defending user privacy. While chatting privately, you can add some seasonal flair with Signal Stickers, and rest assured: friends receiving them get the full sticker pack fully encrypted, safe from prying eyes and lurking spirits.
How To Get and Share Signal StickersOn any mobile device or desktop with the Signal app installed, you can simply click the button below.
Download EFF's Signal Stickers
To share Frights and Rights
You can also paste the sticker link directly into a signal chat, and then tap it to download the pack directly to the app.
Once they’re installed, they are even easier to share—simply open a chat, tap the sticker menu on your keyboard, and send one of EFF’s spooky stickers. They’ll then be asked if they’d like to also have the sticker pack.
All of this works without any third parties knowing what sticker packs you have or whom you shared them with. Our little ghosts and ghouls are just between us.
Meet The EncryptidsThese familiar champions of digital rights—The Encryptids—are back! Don’t let their monstrous looks fool you; each one advocates for privacy, security, and a dash of weirdness in their own way. Whether they’re shouting about online anonymity or the importance of interoperability, they’re ready to help you share your love for digital rights. Learn more about their stories here, and you can even grab a bigfoot pin to let everyone know that privacy is a “human” right.
Street-Level Surveillance MonstersOn a cool autumn night, you might be on the lookout for ghosts and ghouls from your favorite horror flicks—but in the real world, there are far scarier monsters lurking in the dark: police surveillance technologies. Often hidden in plain sight, these tools quietly watch from the shadows and are hard to spot. That’s why we’ve given these tools the hideous faces they deserve in our Street-Level Surveillance Monsters series, ready to scare (and inform) your loved ones.
Copyright CreaturesAsk any online creator and they’ll tell you: few things are scarier than a copyright takedown. From unfair DMCA claims and demonetization to frivolous lawsuits designed to intimidate people into a hefty payment, the creeping expansion of copyright can inspire as much dread as any monster on the big screen. That’s why this pack includes a few trolls and creeps straight from a broken copyright system—where profit haunts innovation.
To that end, all of EFF’s work (including these stickers) are under an open CC-BY License, free for you to use and remix as you see fit.
Happy Haunting Everybody!These frights may disappear with your message, but the fights persist. That’s why we’re so grateful to EFF supporters for helping us make the digital world a little more weird and a little less scary. You can become a member today and grab some gear to show your support. Happy Halloween!
Solar energy startup Active Surfaces wins inaugural PITCH.nano competition
The inaugural PITCH.nano competition, hosted by MIT.nano’s hard technology accelerator START.nano, provided a platform for early-stage startups to present their innovations to MIT and Boston’s hard-tech startup ecosystem.
The grand prize winner was Active Surfaces, a startup that is generating renewable energy exactly where it is going to be used through lightweight, flexible solar cells. Active Surfaces says its ultralight, peel-and-stick panels will reimagine how we deploy photovoltaics in the built environment.
Shiv Bhakta MBA ’24, SM ’24, CEO and co-founder, delivered the winning presentation to an audience of entrepreneurs, investors, startup incubators, and industry partners at PITCH.nano on Sept. 30. Active Surfaces received the grand prize of 25,000 nanoBucks — equivalent to $25,000 that can be spent at MIT.nano facilities.
Why has MIT.nano chosen to embrace startup activity as much as we do? asked Vladimir Bulović, MIT.nano faculty director, at the start of PITCH.nano. “We need to make sure that entrepreneurs can be born out of MIT and can take the next technical ideas developed in the lab out into the market, so they can make the next millions of jobs that the world needs.”
The journey of a hard-tech entrepreneur takes at least 10 years and 100 million dollars, explained Bulović. By linking open tool facilities to startup needs, MIT.nano can make those first few years a little bit easier, bringing more startups to the scale-up stage.
“Getting VCs [venture capitalists] to invest in hard tech is challenging,” explained Joyce Wu SM ’00, PhD ’07, START.nano program manager. “Through START.nano, we provide discounted access to MIT.nano’s cleanrooms, characterization tools, and laboratories for startups to build their prototypes and attract investment earlier and with reduced spend. Our goal is to support the translation of fundamental research to real-world solutions in hard tech.”
In addition to discounted access to tools, START.nano helps early-stage companies become part of the MIT and Cambridge innovation network. PITCH.nano, inspired by the MIT 100K Competition, was launched as a new opportunity this year to introduce these hard-tech ventures to the investor and industry community. Twelve startups delivered presentations that were evaluated by a panel of four judges who are, themselves, venture capitalists and startup founders.
“It is amazing to see the quality, diversity, and ingenuity of this inspiring group of startups,” said judge Brendan Smith PhD ’18, CEO of SiTration, a company that was part of the inaugural START.nano cohort. “Together, these founders are demonstrating the power of fundamental hard-tech innovation to solve the world’s greatest challenges, in a way that is both scalable and profitable.”
Startups who presented at PITCH.nano spanned a wide range of focus areas. In the fields of climate, energy, and materials, the audience heard from Addis Energy, Copernic Catalysts, Daqus Energy, VioNano Innovations, Active Surfaces, and Metal Fuels; in life sciences, Acorn Genetics, Advanced Silicon Group, and BioSens8; and in quantum and photonics, Qunett, nOhm Devices, and Brightlight Photonics. The common thread for these companies: They are all using MIT.nano to advance their innovations.
“MIT.nano has been instrumental in compressing our time to market, especially as a company building a novel, physical product,” said Bhakta. “Access to world-class characterization tools — normally out of reach for startups — lets us validate scale-up much faster. The START.nano community accelerates problem-solving, and the nanoBucks award is directly supporting the development of our next prototypes headed to pilot.”
In addition to the grand prize, a 5,000 nanoBucks audience choice award went to Advanced Silicon Group, a startup that is developing a next-generation biosensor to improve testing in pharma and health tech.
Now in its fifth year, START.nano has supported 40 companies spanning a diverse set of market areas — life sciences, clean tech, semiconductors, photonics, quantum, materials, and software. Fourteen START.nano companies have graduated from the program, proving that START.nano is indeed succeeding in its mission to help early-stage ventures advance from prototype to manufacturing. “I believe MIT.nano has a fantastic opportunity here,” said judge Davide Marini, PhD ’03, co-founder and CEO of Inkbit, “to create the leading incubator for hard tech entrepreneurs worldwide.”
START.nano accepts applications on a monthly basis. The program is made possible through the generous support of FEMSA.
MIT Global Seed Funds catalyze research in over 20 countries
Since launching in 2008, the MIT Global Seed Funds (GSF) program has awarded roughly $30 million to more than 1,300 high-impact faculty research projects across the world, spurring consequential collaborations on topics that include swine-fever vaccines, deforestation of the Amazon, the impact of “coral mucus” on the Japanese island of Okinawa, and the creation of an AI-driven STEM-education lab within Nigeria’s oldest university.
Administered by the MIT Center for International Studies (CIS) and open to MIT faculty and principal investigators, GSF boasts a unique funding structure consisting of both a general fund for unrestricted geographical use and more than 20 different specific funds for individual universities, regions, and countries.
GSF projects often tackle critical challenges that require international solutions, culminating in patents, policy changes, and published papers in journals such as Nature and Science. Some faculty-led projects from this year include Professor Hugh Herr’s modular crutches for people with disabilities in Sierra Leone, Research Scientist Paolo Santi’s large-language models to predict energy consumption in grocery stores, and Professor Ernest Fraenkel’s development of mRNA therapies for the neurodegenerative disease amyotrophic lateral sclerosis (ALS).
GSF Assistant Director Justin Leahey, who is managing director of the MIT-Germany and MIT-Switzerland programs, says that GSF has expanded exponentially over the years, including most recently into the Czech Republic, Norway, Slovakia, and — starting in fall 2025 — Hungary. This year there were a grand total of roughly 300 research proposals submitted for consideration, with many of the accepted proposals including the active participation of students at both the graduate and undergraduate level.
Central to GSF’s work is “reciprocal exchange” — the concept of collaborators in and out of MIT sharing their work and exchanging ideas in an egalitarian way, rather than bringing a one-sided approach to different research challenges. Frequent collaborator Raffaella Gozzelino, a neurology researcher and principal investigator at NOVA Medical School in Portugal who works closely with Jacquin Niles, an MIT professor of biological engineering, says that research is more impactful “when specialized knowledge integrates local realities and reveals potential solutions to national challenges,” and views the spirit of reciprocal exchange as something that revolves around “sharing knowledge and co-creating solutions that empower one another and build bridges across borders.”
For Cindy Xie ’24, MCP ’25, her master’s thesis emerged from the first-ever GSF-supported research internship in Cape Verde, where she worked with Niles and Gozzelino to explore the impact of climate change on anemia in the country of 500,000 people, focusing specifically on its largest island of Santiago. Xie says that she was struck by the intertwined intersectional nature of the issues of nutrition, climate, and infection in Santiago, home to the nation’s capital city of Praia. For example, Xie and Gozzelino’s team found that respondents perceived a rise in costs of fresh produce over time, exacerbated by drought and unpredictable agricultural conditions, which in turn impacted existing nutritional deficiencies and increased residents’ susceptibility to mosquito-borne diseases.
“Though this multidisciplinary research lens is challenging in terms of actual project implementation, it was meaningful in that it generated insights and connections across fields that allow our research to be better contextualized within the experiences of the communities that it impacts,” Xie says.
Gozzelino says that it has been meaningful to witness how scientific research can transcend academic boundaries and generate real impact. She says that, by examining the effects of climate change on infectious diseases and nutrition in Cape Verde, the team will be able to build a framework that can directly inform public policy.
“Contributing to a project that underscores the importance of integrating scientific knowledge into decision-making will safeguard vulnerable populations and make them feel included in the society they belong,” Gozzelino says. “This collaboration has revealed the enormous potential of international partnerships to strengthen local research capacity and address global challenges.”
During her time in Cape Verde working with Xie and Gozzelino, Amulya Aluru ’23, MEng ’24 got to meet with 20 local officials and connect with new people in a wide range of roles across the country, helping her “recognize the power of interpersonal relationships and collaboration” in public health research. She says that the structure of the GSF grant gave her the unique experience of having mentors and coworkers in three different countries, spanning Cape Verde, the United States, and Portugal.
Aluru says that this kind of cross-pollination “enabled me to strengthen my research with different perspectives and challenged me to approach my work in a way that I’d never done before, with a more global mindset.”
Xie similarly expresses her deep appreciation for the long-term relationships she has built through the project and the linkages between Santiago and Boston, which itself is home to one of the world’s largest Cape Verdean diasporas. “As a student, this was a valuable experience to inform the approaches to collaboration that I would like to implement in my own future work,” Xie says.
More broadly, Gozzelino sees GSF grants like the Cape Verde one as being not simply a vehicle for financial support, but “a catalyst for turning partnerships into long-term impactful collaborations, demonstrating how global networks can aid the development of human capital.”
GSF’s long history of reaching across departments and borders has led to multiple meaningful academic collaborations that have since come to span continents — and decades. In 2015, Professor Jörn Dunkel — an applied mathematician at MIT — kicked off work on a data-sharing repository for bacterial biofilms with the interdisciplinary German microbiologist Knut Drescher, then a professor of biophysics at Philipps-Universität Marburg in Germany. Dunkel and Drescher have since co-authored more than 15 papers together in publications like Nature Physics and Science Advances alongside their teams of graduate students and postdocs, even with Drescher having moved locations and crossed country lines to Switzerland as a faculty member at the University of Basel’s Biozentrum Center for Molecular Life Sciences.
“Our collaboration often creates great synergy by combining my team’s experiments with the theory from Jörn’s team,” says Drescher. “It is a great joy to see his perspective on the experimental systems we are working on. He is able to really understand and engage with experimental biological data, identifying patterns in seemingly distant biological systems.”
In explaining the CIS initiative’s success, Leahey points to the synergistic, academically eclectic, cross-disciplinary nature of the program. “[GSF] is a research fund that doesn’t ‘fund research’ in the conventional sense,” he says. “It seeds early-stage collaboration and lets people explore.”
The MIT Global Seed Funds applications are now open, with a deadline of Dec. 16.
Alan Whitney, MIT Haystack Observatory radio astronomer who pioneered very long baseline interferometry, dies at 81
Alan Robert Whitney ’66, SM ’67, PhD ’74, a longtime research scientist at the MIT Haystack Observatory who also served its associate director and interim director, died on Sept. 28 at age 81.
Whitney was a key contributor to the accomplishments and reputation of Haystack Observatory, having led the development of innovative technologies to advance the powerful radio science technique of very long baseline interferometry (VLBI). He ascended to the rank of MIT principal research scientist, served for many years as associate director of the observatory, and in 2007–08 took the reins as interim director. In 2011, he was awarded an MIT Excellence award.
From an early age, Whitney displayed extraordinary talent. Raised in Wyoming, as a high schooler he won the state science fair in 1962 by building a satellite telemetry receiver, which he designed and built from transistors and other discrete components in a barn on his family’s dairy farm. He enrolled at MIT and completed a five-year master’s degree via a cooperative internship program with Bell Laboratories, subsequently earning his PhD in electrical engineering.
Haystack Director Phil Erickson says, “Alan’s personality and enthusiasm were infectious, and his work represented the best ideals of the Haystack and MIT research enterprise — innovative, curious, and exploring the frontiers of basic and applied science and technology.”
In the late 1960s, as part of his PhD work, he was heavily involved in the pioneering development of VLBI, an extraordinary technique that yielded direct measurements of continental drift and information on distant radio sources at unprecedented angular resolution. A landmark paper led by Whitney demonstrated the presence of apparent superluminal (faster than light) motion of radio sources, which was explained as highly relativistic motion aligned toward the Earth. He spent the rest of his long and productive career at Haystack, pushing forward VLBI technology to ever-greater heights and ever-more impactful scientific capabilities.
“Alan was a technology pillar, a stalwart builder and worldwide ambassador of Haystack, and a leading figure of the VLBI geodetic community who inspired generations of scientists and engineers,” says Pedro Elosegui, leader of the Haystack geodesy group. “He contributed fundamentally to the vision and design of the VLBI Geodetic Observing System, outlining a path to a next-generation VLBI system with unprecedented new capabilities to address emerging space geodesy science needs such as global sea-level rise.”
The early days of VLBI demanded heroic and grueling efforts, traveling the world with exotic devices in hand-carried luggage, mounting and dismounting thousands of magnetic tapes every couple of minutes for hours on end, troubleshooting complex and sensitive instrumentation, and writing highly specialized software for the mainframe computers of the day. Whitney was fully engaged on all these fronts. By the early 1980s, the Mark III recording and correlation systems, whose development was led by Whitney, were established as the state of the art in VLBI technology, and a standard around which the global VLBI community coalesced.
Whitney later led the transition to VLBI disk-based recording. Specialized and robust Mark V systems optimized for shipping logistics and handling were transferred to industry for commercialization, leading once again to widespread global adoption of Haystack-developed VLBI technology. Consistently across all these developments, Whitney identified and exploited the most relevant and practical emerging technologies for the Haystack VLBI mission in hardware, software, and computing infrastructure.
In the latter part of his career, Whitney continued to innovate, pushing the technical boundaries of VLBI. A key advance was the Mark 6 (Mk6) recording system, capable of yet faster recording, higher sensitivity, and more robustness. The Mk6 recorders’ essential capability allowed the creation of the Event Horizon Telescope, which famously yielded the first image of the shadow of a black hole. Mk6 recorders are now used to routinely record data roughly 100,000 times faster than the computer tapes used at the start of his career.
As a senior technical and scientific leader, Whitney provided broad leadership and consultation to Haystack, and worked on a number of projects outside of the VLBI world. He served as interim Haystack director from January 2007 until a permanent director was appointed in September 2008. He also engaged with the development project for the international Murchison Widefield Array (MWA) in Australia, focused on frontier research studying early universe development. Whitney assumed the role of MWA project director from 2008 until groups in Australia took over the construction phase of the project a few years later. Until his full retirement in 2012, Whitney continued to provide invaluable technical insights and support at Haystack, and was a trusted and wise counsel to the Haystack Director’s Office. In 2020, Whitney was a co-recipient of the 2020 Breakthrough Prize in Fundamental Physics awarded to the Event Horizon Telescope Collaboration.
Alan Whitney was a top-notch technologist with a broad perspective that allowed him to guide Haystack to decades of influential leadership in the development and refinement of the VLBI technique. His dedication at MIT to the observatory, its people, and its mission were a source of inspiration to many at Haystack and well beyond. He was widely admired for the clarity of his thought, the sharpness of his intellect, and his genial and friendly nature. His numerous local, national, and global colleagues will feel his absence.
Agentic AI’s OODA Loop Problem
The OODA loop—for observe, orient, decide, act—is a framework to understand decision-making in adversarial situations. We apply the same framework to artificial intelligence agents, who have to make their decisions with untrustworthy observations and orientation. To solve this problem, we need new systems of input, processing, and output integrity.
Many decades ago, U.S. Air Force Colonel John Boyd introduced the concept of the “OODA loop,” for Observe, Orient, Decide, and Act. These are the four steps of real-time continuous decision-making. Boyd developed it for fighter pilots, but it’s long been applied in artificial intelligence (AI) and robotics. An AI agent, like a pilot, executes the loop over and over, accomplishing its goals iteratively within an ever-changing environment. This is Anthropic’s definition: “Agents are models using tools in a loop.”...
