Feed aggregator

Learning from punishment

MIT Latest News - Wed, 08/20/2025 - 4:45pm

From toddlers’ timeouts to criminals’ prison sentences, punishment reinforces social norms, making it known that an offender has done something unacceptable. At least, that is usually the intent — but the strategy can backfire. When a punishment is perceived as too harsh, observers can be left with the impression that an authority figure is motivated by something other than justice.

It can be hard to predict what people will take away from a particular punishment, because everyone makes their own inferences not just about the acceptability of the act that led to the punishment, but also the legitimacy of the authority who imposed it. A new computational model developed by scientists at MIT’s McGovern Institute for Brain Research makes sense of these complicated cognitive processes, recreating the ways people learn from punishment and revealing how their reasoning is shaped by their prior beliefs.

Their work, reported Aug. 4 in the journal PNAS, explains how a single punishment can send different messages to different people, and even strengthen the opposing viewpoints of groups who hold different opinions about authorities or social norms.

“The key intuition in this model is the fact that you have to be evaluating simultaneously both the norm to be learned and the authority who’s punishing,” says McGovern investigator and John W. Jarve Professor of Brain and Cognitive Sciences Rebecca Saxe, who led the research. “One really important consequence of that is even where nobody disagrees about the facts — everybody knows what action happened, who punished it, and what they did to punish it — different observers of the same situation could come to different conclusions.”

For example, she says, a child who is sent to timeout after biting a sibling might interpret the event differently than the parent. One might see the punishment as proportional and important, teaching the child not to bite. But if the biting, to the toddler, seemed a reasonable tactic in the midst of a squabble, the punishment might be seen as unfair, and the lesson will be lost.

People draw on their own knowledge and opinions when they evaluate these situations — but to study how the brain interprets punishment, Saxe and graduate student Setayesh Radkani wanted to take those personal ideas out of the equation. They needed a clear understanding of the beliefs that people held when they observed a punishment, so they could learn how different kinds of information altered their perceptions. So Radkani set up scenarios in imaginary villages where authorities punished individuals for actions that had no obvious analog in the real world.

Participants observed these scenarios in a series of experiments, with different information offered in each one. In some cases, for example, participants were told that the person being punished was either an ally or a competitor of the authority, whereas in other cases, the authority’s possible bias was left ambiguous.

“That gives us a really controlled setup to vary prior beliefs,” Radkani explains. “We could ask what people learn from observing punitive decisions with different severities, in response to acts that vary in their level of wrongness, by authorities that vary in their level of different motives.”

For each scenario, participants were asked to evaluate four factors: how much the authority figure cared about justice; the selfishness of the authority; the authority’s bias for or against the individual being punished; and the wrongness of the punished act. The research team asked these questions when participants were first introduced to the hypothetical society, then tracked how their responses changed after they observed the punishment. Across the scenarios, participants’ initial beliefs about the authority and the wrongness of the act shaped the extent to which those beliefs shifted after they observed the punishment.

Radkani was able to replicate these nuanced interpretations using a cognitive model framed around an idea that Saxe’s team has long used to think about how people interpret the actions of others. That is, to make inferences about others’ intentions and beliefs, we assume that people choose actions that they expect will help them achieve their goals.

To apply that concept to the punishment scenarios, Radkani developed a model that evaluates the meaning of a punishment (an action aimed at achieving a goal of the authority) by considering the harm associated with that punishment; its costs or benefits to the authority; and its proportionality to the violation. By assessing these factors, along with prior beliefs about the authority and the punished act, the model was able to predict people’s responses to the hypothetical punishment scenarios, supporting the idea that people use a similar mental model. “You need to have them consider those things, or you can’t make sense of how people understand punishment when they observe it,” Saxe says.

Even though the team designed their experiments to preclude preconceived ideas about the people and actions in their imaginary villages, not everyone drew the same conclusions from the punishments they observed. Saxe’s group found that participants’ general attitudes toward authority influenced their interpretation of events. Those with more authoritarian attitudes — assessed through a standard survey — tended to judge punished acts as more wrong and authorities as more motivated by justice than other observers.

“If we differ from other people, there’s a knee-jerk tendency to say, ‘either they have different evidence from us, or they’re crazy,’” Saxe says. Instead, she says, “It’s part of the way humans think about each other’s actions.”

“When a group of people who start out with different prior beliefs get shared evidence, they will not end up necessarily with shared beliefs. That’s true even if everybody is behaving rationally,” says Saxe.

This way of thinking also means that the same action can simultaneously strengthen opposing viewpoints. The Saxe lab’s modeling and experiments showed that when those viewpoints shape individuals’ interpretations of future punishments, the groups’ opinions will continue to diverge. For instance, a punishment that seems too harsh to a group who suspects an authority is biased can make that group even more skeptical of the authority’s future actions. Meanwhile, people who see the same punishment as fair and the authority as just will be more likely to conclude that the authority figure’s future actions are also just. 

“You will get a vicious cycle of polarization, staying and actually spreading to new things,” says Radkani.

The researchers say their findings point toward strategies for communicating social norms through punishment. “It is exactly sensible in our model to do everything you can to make your action look like it’s coming out of a place of care for the long-term outcome of this individual, and that it’s proportional to the norm violation they did,” Saxe says. “That is your best shot at getting a punishment interpreted pedagogically, rather than as evidence that you’re a bully.”

Nevertheless, she says that won’t always be enough. “If the beliefs are strong the other way, it’s very hard to punish and still sustain a belief that you were motivated by justice.”

Joining Saxe and Radkani on the paper is Joshua Tenenbaum, MIT professor of brain and cognitive sciences. The study was funded, in part, by the Patrick J McGovern Foundation.

A boost for the precision of genome editing

MIT Latest News - Wed, 08/20/2025 - 4:30pm

The U.S. Food and Drug Administration’s recent approval of the first CRISPR-Cas9–based gene therapy has marked a major milestone in biomedicine, validating genome editing as a promising treatment strategy for disorders like sickle cell disease, muscular dystrophy, and certain cancers.

CRISPR-Cas9, often likened to “molecular scissors,” allows scientists to cut DNA at targeted sites to snip, repair, or replace genes. But despite its power, Cas9 poses a critical safety risk: The active enzyme can linger in cells and cause unintended DNA breaks — so-called off-target effects — which may trigger harmful mutations in healthy genes.

Now, researchers in the labs of Ronald T. Raines, MIT professor of chemistry, and Amit Choudhary, professor of medicine at Harvard Medical School, have engineered a precise way to turn Cas9 off after its job is done — significantly reducing off-target effects and improving the clinical safety of gene editing. Their findings are detailed in a new paper published in the Proceedings of the National Academy of Sciences (PNAS).

“To ‘turn off’ Cas9 after it achieves its intended genome-editing outcome, we developed the first cell-permeable anti-CRISPR protein system,” says Raines, the Roger and Georges Firmenich Professor of Natural Products Chemistry. “Our technology reduces the off-target activity of Cas9 and increases its genome-editing specificity and clinical utility.”

The new tool — called LFN-Acr/PA — uses a protein-based delivery system to ferry anti-CRISPR proteins into human cells rapidly and efficiently. While natural Type II anti-CRISPR proteins (Acrs) are known to inhibit Cas9, their use in therapy has been limited because they’re often too bulky or charged to enter cells, and conventional delivery methods are too slow or ineffective.

LFN-Acr/PA overcomes these hurdles using a component derived from anthrax toxin to introduce Acrs into cells within minutes. Even at picomolar concentrations, the system shuts down Cas9 activity with remarkable speed and precision — boosting genome-editing specificity up to 40 percent.

Bradley L. Pentelute, MIT professor of chemistry, is an expert on the anthrax delivery system, and is also an author of the paper.

The implications of this advance are wide-ranging. With patent applications filed, LFN-Acr/PA represents a faster, safer, and more controllable means of harnessing CRISPR-Cas9, opening the door to more-refined gene therapies with fewer unintended consequences.

The research was supported by the National Institutes of Health and a Gilliam Fellowship from the Howard Hughes Medical Institute awarded to lead author Axel O. Vera, a graduate student in the Department of Chemistry.

Materials Research Laboratory: Driving interdisciplinary materials research at MIT

MIT Latest News - Wed, 08/20/2025 - 4:15pm

Materials research thrives across MIT, spanning disciplines and departments. Recent breakthroughs include strategies for securing sustainable supplies of nickel — critical to clean-energy technologies (Department of Materials Science and Engineering); the discovery of unexpected magnetism in atomically thin quantum materials (Department of Physics); and the development of adhesive coatings that reduce scarring around medical implants (departments of Mechanical Engineering and Civil and Environmental Engineering).

Beyond individual projects, the MIT Materials Research Laboratory (MRL) fosters broad collaboration through strategic initiatives such as the Materials Systems Laboratory and SHINE (Sustainability and Health Initiative for Net Positive Enterprise). These efforts bring together academia, government, and industry to accelerate innovation in sustainability, energy use, and advanced materials.

MRL, a hub that connects and supports the Institute’s materials research community, is at the center of these efforts. “MRL serves as a home for the entire materials research community at MIT,” says C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering who became MRL director in April. “Our goal is to make it easier for our faculty to conduct their extraordinary research.”

A storied history

Established in 2017, the MRL brings together more than 30 researchers and builds on a 48-year legacy of innovation. It was formed through the merger of the MIT Materials Processing Center (MPC) and the Center for Materials Science and Engineering (CMSE), two institutions that helped lay the foundation for MIT’s global leadership in materials science.

Over the years, research supported by MPC and CMSE has led to transformative technologies and successful spinout companies. Notable examples include amsc, based on advances in superconductivity; OmniGuide, which developed cutting-edge optical fiber technologies; and QD Vision, a pioneer in quantum dot technology acquired by Samsung in 2016. Another landmark achievement was the development of the first germanium laser to operate at room temperature — a breakthrough now used in optical communications.

Enabling research through partnership and support

MRL is launching targeted initiatives to connect MIT researchers with industry partners around specific technical challenges. Each initiative will be led by a junior faculty member working closely with MRL to identify a problem that aligns with their research expertise and is relevant to industry needs.

Through multi-year collaborations with participating companies, faculty can explore early-stage solutions in partnership with postdocs or graduate students. These initiatives are designed to be agile and interdisciplinary, with the potential to grow into major, long-term research programs.

Behind-the-scenes support, front-line impact

MRL provides critical infrastructure that enables faculty to focus on discovery, not logistics. “MRL works silently in the background, where every problem a principal investigator has related to the administration of materials research is solved with efficiency, good organization, and minimum effort,” says Tasan.

This quiet but powerful support spans multiple areas:

  • The finance team manages grants and helps secure new funding opportunities.
  • The human resources team supports the hiring of postdocs.
  • The communications team amplifies the lab’s impact through compelling stories shared with the public and funding agencies.
  • The events team plans and coordinates conferences, seminars, and symposia that foster collaboration within the MIT community and with external partners.

Together, these functions ensure that research at MRL runs smoothly and effectively — from initial idea to lasting innovation.

Leadership with a vision

Tasan, who also leads a research group focused on metallurgy, says he took on the directorship because “I thrive on new challenges.” He also saw the role as an opportunity to contribute more broadly to MIT. 

“I believe MRL can play an even greater role in advancing materials research across the Institute, and I’m excited to help make that happen,” he says.

Recent MRL initiatives

MRL has supported a wide range of research programs in partnership with major industry leaders, including Apple, Ford, Microsoft,  Rio Tinto, IBM, Samsung, and Texas Instruments, as well as organizations such as Advanced Functional Fabrics of America, Allegheny Technologies, Ericsson, and the Semiconductor Research Corp.

MRL researchers are addressing critical global challenges in energy efficiency, environmental sustainability, and the development of next-generation material systems.

  • Professor Antoine Allanore is advancing a direct process for wire production from sulfide concentrates, offering a more efficient and sustainable alternative to traditional methods.
  • Professor Joe Checkelsky is leading pioneering research on scalable, high-temperature quantum materials, in the realm of quantum transport.
  • Professor Pablo Jarillo-Herrero is making significant progress with two-dimensional materials and their heterostructures.
  • Professor Nuh Gedik explores ultrafast electronic and structural dynamics and light-matter interactions.
  • Professor Gregory Rutledge spearheaded a National Institute of Standards and Technology Rapid Assistance for Coronavirus Economic Response (NIST RACER)-sponsored initiative to develop biodegradable nanofiber-based personal protective equipment, aimed at improving manufacturing automation, diversifying supply chains, and reducing environmental impact.
  • Professor Elsa Olivetti serves as the lead principal investigator at MIT for REMADE: the Institute for Reducing Embodied-energy and Decreasing Emissions. Her research on fiber recovery and post-consumer resin processing directly supports REMADE’s mission to enhance material circularity and reduce energy use by 50 percent by 2027.
  • Randy Kirchain is modeling metals markets under decarbonization, and developing greener construction materials.
  • Anu Agarwal is spearheading efforts to build a sustainable microchip manufacturing ecosystem. 

New laser “comb” can enable rapid identification of chemicals with extreme precision

MIT Latest News - Wed, 08/20/2025 - 10:00am

Optical frequency combs are specially designed lasers that act like rulers to accurately and rapidly measure specific frequencies of light. They can be used to detect and identify chemicals and pollutants with extremely high precision.

Frequency combs would be ideal for remote sensors or portable spectrometers because they can enable accurate, real-time monitoring of multiple chemicals without complex moving parts or external equipment.

But developing frequency combs with high enough bandwidth for these applications has been a challenge. Often, researchers must add bulky components that limit scalability and performance.

Now, a team of MIT researchers has demonstrated a compact, fully integrated device that uses a carefully crafted mirror to generate a stable frequency comb with very broad bandwidth. The mirror they developed, along with an on-chip measurement platform, offers the scalability and flexibility needed for mass-producible remote sensors and portable spectrometers. This development could enable more accurate environmental monitors that can identify multiple harmful chemicals from trace gases in the atmosphere.

“The broader the bandwidth a spectrometer has, the more powerful it is, but dispersion is in the way. Here we took the hardest problem that limits bandwidth and made it the centerpiece of our study, addressing every step to ensure robust frequency comb operation,” says Qing Hu, Distinguished Professor in Electrical Engineering and Computer Science at MIT, principal investigator in the Research Laboratory of Electronics, and senior author on an open-access paper describing the work.

He is joined on the paper by lead author Tianyi Zeng PhD ’23; as well as Yamac Dikmelik of General Dynamics Mission Systems; Feng Xie and Kevin Lascola of Thorlabs Quantum Electronics; and David Burghoff SM ’09, PhD ’14, an assistant professor at the University of Texas at Austin. The research appears today in Light: Science and Applications.

Broadband combs

An optical frequency comb produces a spectrum of equally spaced laser lines, which resemble the teeth of a comb.

Scientists can generate frequency combs using several types of lasers for different wavelengths. By using a laser that produces long wave infrared radiation, such as a quantum cascade laser, they can use frequency combs for high-resolution sensing and spectroscopy.

In dual-comb spectroscopy (DCS), the beam of one frequency comb travels straight through the system and strikes a detector at the other end. The beam of the second frequency comb passes through a chemical sample before striking the same detector. Using the results from both combs, scientists can faithfully replicate the chemical features of the sample at much lower frequencies, where signals can be easily analyzed.

The frequency combs must have high bandwidth, or they will only be able to detect a small frequency range of chemical compounds, which could lead to false alarms or inaccurate results.

Dispersion is the most important factor that limits a frequency comb’s bandwidth. If there is dispersion, the laser lines are not evenly spaced, which is incompatible with the formation of frequency combs.

“With long wave infrared radiation, the dispersion will be very high. There is no way to get around it, so we have to find a way to compensate for it or counteract it by engineering our system,” Hu says.

Many existing approaches aren’t flexible enough to be used in different scenarios or don’t enable high enough bandwidth.

Hu’s group previously solved this problem in a different type of frequency comb, one that used terahertz waves, by developing a double-chirped mirror (DCM).

A DCM is a special type of optical mirror that has multiple layers with thicknesses that change gradually from one end to the other. They found that this DCM, which has a corrugated structure, could effectively compensate for dispersion when used with a terahertz laser.

“We tried to borrow this trick and apply it to an infrared comb, but we ran into lots of challenges,” Hu says.

Because infrared waves are 10 times shorter than terahertz waves, fabricating the new mirror required an extreme level of precision. At the same time, they needed to coat the entire DCM in a thick layer of gold to remove the heat under laser operation. Plus, their dispersion measurement system, designed for terahertz waves, wouldn’t work with infrared waves, which have frequencies that are about 10 times higher than terahertz.

“After more than two years of trying to implement this scheme, we reached a dead end,” Hu says.

A new solution

Ready to throw in the towel, the team realized something they had missed. They had designed the mirror with corrugation to compensate for the lossy terahertz laser, but infrared radiation sources aren’t as lossy.

This meant they could use a standard DCM design to compensate for dispersion, which is compatible with infrared radiation. However, they still needed to create curved mirror layers to capture the beam of the laser, which made fabrication much more difficult than usual.

“The adjacent layers of mirror differ only by tens of nanometers. That level of precision precludes standard photolithography techniques. On top of that, we still had to etch very deeply into the notoriously stubborn material stacks. Achieving those critical dimensions and etch depths was key to unlocking broadband comb performance,” Zeng says. In addition to precisely fabricating the DCM, they integrated the mirror directly onto the laser, making the device extremely compact. The team also developed a high-resolution, on-chip dispersion measurement platform that doesn’t require bulky external equipment.

“Our approach is flexible. As long as we can use our platform to measure the dispersion, we can design and fabricate a DCM that compensates for it,” Hu adds.

Taken together, the DCM and on-chip measurement platform enabled the team to generate stable infrared laser frequency combs that had far greater bandwidth than can usually be achieved without a DCM.

In the future, the researchers want to extend their approach to other laser platforms that could generate combs with even greater bandwidth and higher power for more demanding applications.

“These researchers developed an ingenious nanophotonic dispersion compensation scheme based on an integrated air–dielectric double-chirped mirror. This approach provides unprecedented control over dispersion, enabling broadband comb formation at room temperature in the long-wave infrared. Their work opens the door to practical, chip-scale frequency combs for applications ranging from chemical sensing to free-space communications,” says Jacob B. Khurgin, a professor at the Johns Hopkins University Whiting School of Engineering, who was not involved with this paper.

This work is funded, in part, by the U.S. Defense Advanced Research Projects Agency (DARPA) and the Gordon and Betty Moore Foundation.

Subverting AIOps Systems Through Poisoned Input Data

Schneier on Security - Wed, 08/20/2025 - 7:02am

In this input integrity attack against an AI system, researchers were able to fool AIOps tools:

AIOps refers to the use of LLM-based agents to gather and analyze application telemetry, including system logs, performance metrics, traces, and alerts, to detect problems and then suggest or carry out corrective actions. The likes of Cisco have deployed AIops in a conversational interface that admins can use to prompt for information about system performance. Some AIOps tools can respond to such queries by automatically implementing fixes, or suggesting scripts that can address issues...

Heat warnings wither under Trump

ClimateWire News - Wed, 08/20/2025 - 6:23am
Health experts have raced to modernize alert systems as extreme heat kills thousands in the U.S. every year. Those efforts are being canceled.

Erin threatens Outer Banks with storm surge, coastal flooding

ClimateWire News - Wed, 08/20/2025 - 6:22am
The unusually large hurricane and the vulnerable barrier islands both have been influenced by climate change.

EPA gets an earful about its endangerment finding rollback

ClimateWire News - Wed, 08/20/2025 - 6:21am
On the first of four days of public hearings, critics urged the agency to abandon its efforts to kill the cornerstone climate finding.

House Science Dems demand details about EPA’s endangerment reversal

ClimateWire News - Wed, 08/20/2025 - 6:20am
Reps. Zoe Lofgren and Gabe Amo accused Administrator Lee Zeldin of puttng the "bottom line of polluting industry over the interests of the American people.

Canadian carbon removal plant begins storing CO2 underground

ClimateWire News - Wed, 08/20/2025 - 6:19am
The facility known as Alpha is the first one in North America to permanently lock away climate pollution.

Electric school buses hit pothole after major supplier goes bankrupt

ClimateWire News - Wed, 08/20/2025 - 6:18am
School districts used EPA funds to buy Lion buses. Now the company won't honor warranties.

Businesses urge California to extend climate program immediately

ClimateWire News - Wed, 08/20/2025 - 6:16am
Oil companies, utilities and others said Wednesday that California legislators must reauthorize cap and trade before adjourning Sept. 12.

California’s Problem Solvers Caucus lays out cap-and-trade asks

ClimateWire News - Wed, 08/20/2025 - 6:12am
The bipartisan group said it wanted to preserve free emissions permits for industry to manage costs.

A long-term solution for flooding in Alaska’s capital is elusive

ClimateWire News - Wed, 08/20/2025 - 6:12am
A wall of reinforced sandbags held back the worst of the glacial flooding in Juneau. The effort to find a permanent solution is complicated.

Saudi Aramco employee named lead author of global climate report

ClimateWire News - Wed, 08/20/2025 - 6:11am
Mustafa Babiker was proposed for the key role last month.

Italian glacier is so melted it can only be monitored remotely

ClimateWire News - Wed, 08/20/2025 - 6:10am
The Lombardy Glaciological Service will use drone imagery and remote sensing to keep track of the glacier's shrinkage.

Graduate work with an impact — in big cities and on campus

MIT Latest News - Wed, 08/20/2025 - 12:00am

While working to boost economic development in Detroit in the late 2010s, Nick Allen found he was running up against a problem.

The city was trying to spur more investment after long-term industrial flight to suburbs and other states. Relying more heavily on property taxes for revenue, the city was negotiating individualized tax deals with prospective businesses. That’s hardly a scenario unique to Detroit, but such deals involved lengthy approval processes that slowed investment decisions and made smaller projects seem unrealistic. 

Moreover, while creating small pockets of growth, these individualized tax abatements were not changing the city’s broader fiscal structure. They also favored those with leverage and resources to work the system for a break.

“The thing you really don’t want to do with taxes is have very particular, highly procedural ways of adjusting the burdens,” says Allen, now a doctoral student in MIT’s Department of Urban Studies and Planning (DUSP). “You want a simple process that fits people’s ideas about what fairness looks like.”

So, after starting his PhD program at MIT, Allen kept studying urban fiscal policy. Along with a group of other scholars, he has produced research papers making the case for a land-value tax — a common tax rate on land that, combined with reduced property taxes, could raise more local revenue by encouraging more city-wide investment, even while lowering tax burdens on residents and businesses. As a bonus, it could also reduce foreclosures.

In the last few years, this has become a larger topic in urban policy circles. The mayor of Detroit has endorsed the idea. The New York Times has written about the work of Allen and his colleagues. The land-value tax is now a serious policy option.

It is unusual for a graduate student to have their work become part of a prominent policy debate. But then, Allen is an unusual student. At MIT, he has not just conducted influential research in his field, but thrown himself into campus-based work with substantial impact as well. Allen has served on task forces assessing student stipend policy, expanding campus housing, and generating ideas for dining program reform.

For all these efforts, in May, Allen received the Karl Taylor Compton Prize, MIT’s highest student honor. At the ceremony, MIT Chancellor Melissa Nobles observed that Allen’s work helped Institute stakeholders “fully understand complex issues, ensuring his recommendations are not only well-informed but also practical and impactful.”

Looking to revive growth

Allen is a Minnesota native who received his BA from Yale University. In 2015, he enrolled in graduate school at MIT, receiving his master’s in city planning from DUSP in 2017. At the time, Allen worked on the Malaysia Sustainable Cities Project, headed by Professor Lawrence Susskind. At one point Allen spent a couple of months in a small Malaysian village studying the effects of coastal development on local fishing and farming.

Malaysia may be different than Michigan, but the issues that Allen encountered in Asia were similar to the ones he wanted to keep studying back in the U.S.: finding ways to finance growth.

“The core interests I have are around real estate, the physical environment, and these fiscal policy questions of how this all gets funded and what the responsibilities are of the state and private markets,” Allen says. “And that brought me to Detroit.”

Specifically, that landed him at the Detroit Economic Growth Corporation, a city-charted development agency that works to facilitate new investment. There, Allen started grappling with the city’s revenue problems. Once heralded as the richest city in America, Detroit has seen a lot of property go vacant, and has hiked property taxes on existing structures to compensate for that. Those rates then discouraged further investment and building.

To be sure, the challenges Detroit has faced stem from far more than tax policy and relate to many macroscale socioeconomic factors, including suburban flight, the shift of manufacturing to states with nonunion employees, and much more. But changing tax policy can be one lever to pull in response.

“It’s difficult to figure out how to revive growth in a place that’s been cannibalized by its losses,” Allen says.

Tasked with underwriting real estate projects, Allen started cataloguing the problems arising from Detroit’s property tax reliance, and began looking at past economics work on optimal tax policy in search of alternatives.

“There’s a real nose-to-the-ground empiricism you start with, asking why we have a system nobody would choose,” Allen says. “There were two parts to that, for me. One was initially looking at the difficulty of making individual projects work, from affordable housing to big industrial plants, along with, secondly, this wave of tax foreclosures in the city.”

Engineering, but for policy

After two years in Detroit, Allen returned to MIT, this time as a doctoral student in DUSP and with a research program oriented around the issues he had worked on. In pursuing that, Allen has worked closely with John E. Anderson, an economist at the University of Nebraska at Lincoln. With a nationwide team of economists convened by the Lincoln Institute of Land Policy, they worked to address the city’s questions on property tax reform.

One paper used current data to show that a land-value tax should lower tax-connected foreclosures in the city. Two other papers study the use of the tax in certain parts of Pennsylvania, one of the few states where it has been deployed. There, the researchers concluded, the land-value tax both leads to greater business development and raises property values.

“What we found overall, looking at past tax reduction in Detroit and other cities, is that in reducing the rate at which people in deep tax distress go through foreclosure, it has a fairly large effect,” Allen says. “It has some effect on allowing business to reinvest in properties. We are seeing a lot more attraction of investment. And it’s got the virtue of being a rules-based system.”

Those empirical results, he notes, helped confirm the sense that a policy change could help growth in Detroit.

“That really validated the hunch we were following,” Allen says.

The widespread attention the policy proposal has garnered could not really have been predicted. The tax has not yet been implemented in Detroit, although it has been a prominent part of civic debates there. Allen has been asked to consult on tax policy by officials in numerous large cities, and is hopeful the concept will gain still more traction.

Meanwhile, at MIT, Allen has one more year to go in his doctoral program. On top of his academic research, he has been an active participant in Institute matters, helping reshape graduate-school policies on multiple fronts.

For instance, Allen was part of the Graduate Housing Working Group, whose efforts helped spur MIT to build Graduate Junction, a new housing complex for 675 graduate students on Vassar Street in Cambridge, Massachusetts. The name also refers to the Grand Junction rail line that runs nearby; the complex formally opened in 2024.

“Innovative places struggle to build housing fast enough,” Allen said at the time Graduate Junction opened, also noting that “new housing for students reduces price pressure on the rest of the Cambridge community.”

Commenting on it now, he adds, “Maybe to most people graduate housing policy doesn’t sound that fun, but to me these are very absorbing questions.”

And ultimately, Allen says, the intellectual problems in either domain can be similar, whether he is working on city policy issues or campus enhancements.

“The reason I think planning fits so well here at MIT is, a lot of what I do is like policy engineering,” Allen says. “It’s really important to understand system constraints, and think seriously about finding solutions that can be built to purpose. I think that’s why I’ve felt at home here at MIT, working on these outside public policy topics, and projects for the Institute. You need to take seriously what people say about the constraints in their lives.”

Variations in climate change belief systems across 110 geographic areas

Nature Climate Change - Wed, 08/20/2025 - 12:00am

Nature Climate Change, Published online: 20 August 2025; doi:10.1038/s41558-025-02410-1

Climate beliefs do not exist in isolation but form an interconnected network known as a belief system. This study analyses the density and inconsistency of belief systems and their associations with informational and socioeconomic factors to inform effective climate change communication strategies.

Professor John Joannopoulos, photonics pioneer and Institute for Soldier Nanotechnologies director, dies at 78

MIT Latest News - Tue, 08/19/2025 - 2:35pm

John “JJ” Joannopoulos, the Francis Wright Davis Professor of Physics at MIT and director of the MIT Institute for Soldier Nanotechnologies (ISN), passed away on Aug. 17. He was 78. 

Joannopoulos was a prolific researcher in the field of theoretical condensed-matter physics, and an early pioneer in the study and application of photonic crystals. Many of his discoveries, in the ways materials can be made to manipulate light, have led to transformative and life-saving technologies, from chip-based optical wave guides, to wireless energy transfer to health-monitoring textiles, to precision light-based surgical tools.

His remarkable career of over 50 years was spent entirely at MIT, where he was known as much for his generous and unwavering mentorship as for his contributions to science. He made a special point to keep up rich and meaningful collaborations with many of his former students and postdocs, dozens of whom have gone on to faculty positions at major universities, and to leadership roles in the public and private sectors. In his five decades at MIT, he made lasting connections across campus, both in service of science, and friendship.

“A scientific giant, inspiring leader, and a masterful communicator, John carried a generous and loving heart,” says Yoel Fink PhD ’00, an MIT professor of materials science and engineering who was Joannopoulos’ former student and a longtime collaborator. “He chose to see the good in people, keeping his mind and heart always open. Asking little for himself, he gave everything in care of others. John lived a life of deep impact and meaning — savoring the details of truth-seeking, achieving rare discoveries and mentoring generations of students to achieve excellence. With warmth, humor, and a never-ending optimism, JJ left an indelible impact on science and on all who had the privilege to know him. Above all, he was a loving husband, father, grandfather, friend, and mentor.”

“In the end, the most remarkable thing about him was his unmatched humanity, his ability to make you feel that you were the most important thing in the world that deserved his attention, no matter who you were,” says Raul Radovitzky, ISN associate director and the Jerome C. Hunsaker Professor in MIT’s Department of Aeronautics and Astronautics. “The legacy he leaves is not only in equations and innovations, but in the lives he touched, the minds he inspired, and the warmth he spread in every room he entered.”

“JJ was a very special colleague: a brilliant theorist who was also adept at identifying practical applications; a caring and inspiring mentor of younger scientists; a gifted teacher who knew every student in his class by name,” says Deepto Chakrabarty ’88, the William A. M. Burden Professor in Astrophysics and head of MIT’s Department of Physics. “He will be deeply missed.”

Layers of light

John Joannopoulos was born in 1947 in New York City, where his parents both emigrated from Greece. His father was a playwright, and his mother worked as a psychologist. From an early age, Joannopoulos knew he wanted to be a physicist — mainly because the subject was his most challenging in school. In a recent interview with MIT News, he enthusiastically shared: “You probably wouldn’t believe this, but it’s true: I wanted to be a physics professor since I was in high school! I loved the idea of being able to work with students, and being able to have ideas.”

He attended the University of California at Berkeley, where he received a bachelor’s degree in 1968, and a PhD in 1974, both in physics. That same year, he joined the faculty at MIT, where he would spend his 50-plus-year career — though at the time, the chances of gaining a long-term foothold at the Institute seemed slim, as Joannopoulos told MIT News.

“The chair of the physics department was the famous nuclear physicist, Herman Feshbach, who told me the probability that I would get tenure was something like 30 percent,” Joannopoulos recalled. “But when you’re young and just starting off, it was certainly better than zero, and I thought, that was fine — there was hope down the line.”

Starting out at MIT, Joannopoulos knew exactly what he wanted to do. He quickly set up a group to study theoretical condensed-matter physics, and specifically, ab initio physics, meaning physics “from first principles.” In this initial work, he sought to build theoretical models to predict the electronic behavior and structure of materials, based solely on the atomic numbers of the atoms in a material. Such foundational models could be applied to understand and design a huge range of materials and structures.

Then, in the early 1990s, Joannopoulos took a research turn, spurred by a paper by physicist Eli Yablonovitch at the University of California at Los Angeles, who did some preliminary work on materials that can affect the behavior of photons, or particles of light. Joannopoulos recognized a connection with his first-principles work with electrons. Along with his students, he applied that approach to predict the fundamental behavior of photons in different classes of materials. His group was one of the first to pioneer the field of photonic crystals, and the study of how materials can be manipulated at the nanoscale to control the behavior of light traveling through. In 1995, Joannopoulos co-authored the first textbook on the subject.

And in 1998, he took on a more-than-century-old assumption about how light should reflect, and turned it on its head. That assumption predicted that light, shining onto a structure made of multiple refractive layers, could reflect back, but only for a limited range of angles. But in fact, Joannopoulos and his group showed that the opposite is true: If the structure’s layers followed a particular design criteria, the structure as a whole could reflect light coming from any and all angles. This structure, was called the “perfect mirror.”

That insight led to another: If the structure were rolled into a tube, the resulting hollow fiber could act as a perfect optical conduit. Any light traveling through the fiber would reflect and bounce around within the fiber, with none scattering away. Joannopoulos and his group applied this insight to develop the first precision “optical scalpel” — a fiber that can be safely handled, while delivering a highly focused laser, precise and powerful enough to perform delicate surgical procedures. Joannopoulos helped to commercialize the new tool with a startup, Omniguide, that has since provided the optical scalpel to assist in hundreds of thousands of medical procedures around the world.

Legendary mentor

In 2006, Joannopoulos took the helm as director of MIT’s Institute for Soldier Nanotechnologies — a post he steadfastly held for almost 20 years. During his dedicated tenure, he worked with ISN members across campus and in departments outside his own, getting to know and champion their work. He has facilitated countless collaborations between MIT faculty, industry partners, and the U.S. Department of Defense. Among the many projects he raised support for were innovations in lightweight armor, hyperspectral imaging, energy-efficient batteries, and smart and responsive fabrics.

Joannopoulos helped to translate many basic science insights into practical applications. He was a cofounder of six spinoff companies based on his fundamental research, and helped to create dozens more companies, which have advanced technologies as wide-ranging as laser surgery tools, to wireless electric power transmission, transparent display technologies, and optical computing. He was awarded 126 patents for his many discoveries, and has authored over 750 peer-reviewed papers.

In recognition of his wide impact and contributions, Joannopoulos was elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He was also a fellow of both the American Physical Society and the American Association for the Advancement of Science. Over his 50-plus-year career, he was the recipient of many scientific awards and honors including the Max Born Award, and the Aneesur Rahman Prize in Computational Physics. Joannopoulos was also a gifted classroom teacher, and was recognized at MIT with the Buechner Teaching Prize in Physics and the Graduate Teaching Award in Science.

This year, Joannopoulos was the recipient of MIT’s Killian Achievement Award, which recognizes the extraordinary lifetime contributions of a member of the MIT faculty. In addition to the many accomplishments Joannopoulos has made in science, the award citation emphasized his lasting impact on the generations of students he has mentored:

“Professor Joannopoulos has served as a legendary mentor to generations of students, inspiring them to achieve excellence in science while at the same time facilitating the practical benefit to society through entrepreneurship,” the citation reads. “Through all of these individuals he has impacted — not to mention their academic descendants — Professor Joannopoulos has had a vast influence on the development of science in recent decades.”

“JJ was an amazing scientist: He published hundreds of papers that have been cited close to 200,000 times. He was also a serial entrepreneur: Companies he cofounded raised hundreds of millions of dollars and employed hundreds of people,” says MIT Professor Marin Soljacic ’96, a former postdoc under Joannopoulos who with him cofounded a startup, Witricity. “He was an amazing mentor, a close friend, and like a scientific father to me. He always had time for me, any time of the day, and as much as I needed.”

Indeed, Joannopoulos strived to meaningfully support his many students. In the classroom, he “was legendary,” says friend and colleague Patrick Lee ’66, PhD ’70, who recalls that Joannopoulos would make a point of memorizing the names and faces of more than 100 students on the first day of class, and calling them each by their first name, starting on the second day, and for the rest of the term.

What’s more, Joannopoulos encouraged graduate students and postdocs to follow their ideas, even when they ran counter to his own.

“John did not produce clones,” says Lee, who is an MIT professor emeritus of physics. “He showed them the way to do science by example, by caring and by sharing his optimism. I have never seen someone so deeply loved by his students.”

Even students who stepped off the photonics path have kept in close contact with their mentor, as former student and MIT professor Josh Winn ’94, SM ’94, PhD ’01 has done.

“Even though our work together ended more than 25 years ago, and I now work in a different field, I still feel like part of the Joannopoulos academic family,” says Winn, who is now a professor of astrophysics at Princeton University. “It's a loyal group with branches all over the world. We even had our own series of conferences, organized by former students to celebrate John's 50th, 60th, and 70th birthdays. Most professors would consider themselves fortunate to have even one such ‘festschrift’ honoring their legacy.”

MIT professor of mathematics Steven Johnson ’95, PhD ’01, a former student and frequent collaborator, has experienced personally, and seen many times over, Joannopoulos’ generous and open-door mentorship.

“In every collaboration, I’ve unfailingly observed him to cast a wide net to value multiple voices, to ensure that everyone feels included and valued, and to encourage collaborations across groups and fields and institutions,” Johnson says. “Kind, generous, and brimming with infectious enthusiasm and positivity, he set an example so many of his lucky students have striven to follow.”

Joannopoulos started at MIT around the same time as Marc Kastner, who had a nearby office on the second floor of Building 13.

“I would often hear loud arguments punctuated by boisterous laughter, coming from John’s office, where he and his students were debating physics,” recalls Kastner, who is the Donner Professor of Physics Emeritus at MIT. “I am sure this style of interaction is what made him such a great mentor.”

“He exuded such enthusiasm for science and good will to others that he was just good fun to be around,” adds friend and colleague Erich Ippen, MIT professor emeritus of physics.

“John was indeed a great man — a very special one. Everyone who ever worked with him understands this,” says Stanford University physics professor Robert Laughlin PhD ’79, one of Joannopoulos’ first graduate students, who went on to win the 1998 Nobel Prize in Physics. “He sprinkled a kind of transformative magic dust on people that induced them to dedicate every waking moment to the task of making new and wonderful things. You can find traces of it in lots of places around the world that matter, all of them the better for it. There’s quite a pile of it in my office.”

Joannopoulos is survived by his wife, Kyri Dunussi-Joannopoulos; their three daughters, Maria, Lena, and Alkisti; and their families. Details for funeral and memorial services are forthcoming.

Zero-Day Exploit in WinRAR File

Schneier on Security - Tue, 08/19/2025 - 7:07am

A zero-day vulnerability in WinRAR is being exploited by at least two Russian criminal groups:

The vulnerability seemed to have super Windows powers. It abused alternate data streams, a Windows feature that allows different ways of representing the same file path. The exploit abused that feature to trigger a previously unknown path traversal flaw that caused WinRAR to plant malicious executables in attacker-chosen file paths %TEMP% and %LOCALAPPDATA%, which Windows normally makes off-limits because of their ability to execute code.

More details in the article...

Pages