Feed aggregator

MIT engineers develop a magnetic transistor for more energy-efficient electronics

MIT Latest News - Wed, 09/23/3035 - 10:32am

Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.

MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. 

The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.

The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.

“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics. We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research,” says Chung-Tao Chou, an MIT graduate student in the departments of Electrical Engineering and Computer Science (EECS) and Physics, and co-lead author of a paper on this advance.

Chou is joined on the paper by co-lead author Eugene Park, a graduate student in the Department of Materials Science and Engineering (DMSE); Julian Klein, a DMSE research scientist; Josep Ingla-Aynes, a postdoc in the MIT Plasma Science and Fusion Center; Jagadeesh S. Moodera, a senior research scientist in the Department of Physics; and senior authors Frances Ross, TDK Professor in DMSE; and Luqiao Liu, an associate professor in EECS, and a member of the Research Laboratory of Electronics; as well as others at the University of Chemistry and Technology in Prague. The paper appears today in Physical Review Letters.

Overcoming the limits

In an electronic device, silicon semiconductor transistors act like tiny light switches that turn a circuit on and off, or amplify weak signals in a communication system. They do this using a small input voltage.

But a fundamental physical limit of silicon semiconductors prevents a transistor from operating below a certain voltage, which hinders its energy efficiency.

To make more efficient electronics, researchers have spent decades working toward magnetic transistors that utilize electron spin to control the flow of electricity. Electron spin is a fundamental property that enables electrons to behave like tiny magnets.

So far, scientists have mostly been limited to using certain magnetic materials. These lack the favorable electronic properties of semiconductors, constraining device performance.

“In this work, we combine magnetism and semiconductor physics to realize useful spintronic devices,” Liu says.

The researchers replace the silicon in the surface layer of a transistor with chromium sulfur bromide, a two-dimensional material that acts as a magnetic semiconductor.

Due to the material’s structure, researchers can switch between two magnetic states very cleanly. This makes it ideal for use in a transistor that smoothly switches between “on” and “off.”

“One of the biggest challenges we faced was finding the right material. We tried many other materials that didn’t work,” Chou says.

They discovered that changing these magnetic states modifies the material’s electronic properties, enabling low-energy operation. And unlike many other 2D materials, chromium sulfur bromide remains stable in air.

To make a transistor, the researchers pattern electrodes onto a silicon substrate, then carefully align and transfer the 2D material on top. They use tape to pick up a tiny piece of material, only a few tens of nanometers thick, and place it onto the substrate.

“A lot of researchers will use solvents or glue to do the transfer, but transistors require a very clean surface. We eliminate all those risks by simplifying this step,” Chou says.

Leveraging magnetism

This lack of contamination enables their device to outperform existing magnetic transistors. Most others can only create a weak magnetic effect, changing the flow of current by a few percent or less. Their new transistor can switch or amplify the electric current by a factor of 10.

They use an external magnetic field to change the magnetic state of the material, switching the transistor using significantly less energy than would usually be required.

The material also allows them to control the magnetic states with electric current. This is important because engineers cannot apply magnetic fields to individual transistors in an electronic device. They need to control each one electrically.

The material’s magnetic properties could also enable transistors with built-in memory, simplifying the design of logic or memory circuits.

A typical memory device has a magnetic cell to store information and a transistor to read it out. Their method can combine both into one magnetic transistor.

“Now, not only are transistors turning on and off, they are also remembering information. And because we can switch the transistor with greater magnitude, the signal is much stronger so we can read out the information faster, and in a much more reliable way,” Liu says.

Building on this demonstration, the researchers plan to further study the use of electrical current to control the device. They are also working to make their method scalable so they can fabricate arrays of transistors.

This research was supported, in part, by the Semiconductor Research Corporation, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation (NSF), the U.S. Department of Energy, the U.S. Army Research Office, and the Czech Ministry of Education, Youth, and Sports. The work was partially carried out at the MIT.nano facilities.

Search Engines, AI, And The Long Fight Over Fair Use

EFF: Updates - Fri, 01/23/2026 - 8:09pm

We're taking part in Copyright Week, a series of actions and discussions supporting key principles that should guide copyright policy. Every day this week, various groups are taking on different elements of copyright law and policy, and addressing what's at stake, and what we need to do to make sure that copyright promotes creativity and innovation.

Long before generative AI, copyright holders warned that new technologies for reading and analyzing information would destroy creativity. Internet search engines, they argued, were infringement machines—tools that copied copyrighted works at scale without permission. As they had with earlier information technologies like the photocopier and the VCR, copyright owners sued.

Courts disagreed. They recognized that copying works in order to understand, index, and locate information is a classic fair use—and a necessary condition for a free and open internet.

Today, the same argument is being recycled against AI. It’s whether copyright owners should be allowed to control how others analyze, reuse, and build on existing works.

Fair Use Protects Analysis—Even When It’s Automated

U.S. courts have long recognized that copying for purposes of analysis, indexing, and learning is a classic fair use. That principle didn’t originate with artificial intelligence. It doesn’t disappear just because the processes are performed by a machine.

Copying that works in order to understand them, extract information from them, or make them searchable is transformative and lawful. That’s why search engines can index the web, libraries can make digital indexes, and researchers can analyze large collections of text and data without negotiating licenses from millions of rightsholders. These uses don’t substitute for the original works; they enable new forms of knowledge and expression.

Training AI models fits squarely within that tradition. An AI system learns by analyzing patterns across many works. The purpose of that copying is not to reproduce or replace the original texts, but to extract statistical relationships that allow the AI system to generate new outputs. That is the hallmark of a transformative use. 

Attacking AI training on copyright grounds misunderstands what’s at stake. If copyright law is expanded to require permission for analyzing or learning from existing works, the damage won’t be limited to generative AI tools. It could threaten long-standing practices in machine learning and text-and-data mining that underpin research in science, medicine, and technology. 

Researchers already rely on fair use to analyze massive datasets such as scientific literature. Requiring licenses for these uses would often be impractical or impossible, and it would advantage only the largest companies with the money to negotiate blanket deals. Fair use exists to prevent copyright from becoming a barrier to understanding the world. The law has protected learning before. It should continue to do so now, even when that learning is automated. 

A Road Forward For AI Training And Fair Use 

One court has already shown how these cases should be analyzed. In Bartz v. Anthropic, the court found that using copyrighted works to train an AI model is a highly transformative use. Training is a kind of studying how language works—not about reproducing or supplanting the original books. Any harm to the market for the original works was speculative. 

The court in Bartz rejected the idea that an AI model might infringe because, in some abstract sense, its output competes with existing works. While EFF disagrees with other parts of the decision, the court’s ruling on AI training and fair use offers a good approach. Courts should focus on whether training is transformative and non-substitutive, not on fear-based speculation about how a new tool could affect someone’s market share. 

AI Can Create Problems, But Expanding Copyright Is the Wrong Fix 

Workers’ concerns about automation and displacement are real and should not be ignored. But copyright is the wrong tool to address them. Managing economic transitions and protecting workers during turbulent times may be core functions of government, but copyright law doesn’t help with that task in the slightest. Expanding copyright control over learning and analysis won’t stop new forms of worker automation—it never has. But it will distort copyright law and undermine free expression. 

Broad licensing mandates may also do harm by entrenching the current biggest incumbent companies. Only the largest tech firms can afford to negotiate massive licensing deals covering millions of works. Smaller developers, research teams, nonprofits, and open-source projects will all get locked out. Copyright expansion won’t restrain Big Tech—it will give it a new advantage.  

Fair Use Still Matters

Learning from prior work is foundational to free expression. Rightsholders cannot be allowed to control it. Courts have rejected that move before, and they should do so again.

Search, indexing, and analysis didn’t destroy creativity. Nor did the photocopier, nor the VCR. They expanded speech, access to knowledge, and participation in culture. Artificial intelligence raises hard new questions, but fair use remains the right starting point for thinking about training.

Friday Squid Blogging: Giant Squid in the Star Trek Universe

Schneier on Security - Fri, 01/23/2026 - 5:03pm

Spock befriends a giant space squid in the comic Star Trek: Strange New Worlds: The Seeds of Salvation #5.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Blog moderation policy.

Pablo Jarillo-Herrero wins BBVA Foundation Frontiers of Knowledge Award

MIT Latest News - Fri, 01/23/2026 - 4:20pm

Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT, has won the 2025 BBVA Foundation Frontiers of Knowledge Award in Basic Sciences for “discoveries concerning the ‘magic angle’ that allows the behavior of new materials to be transformed and controlled.”

He shares the 400,000-euro award with Allan MacDonald of the University of Texas at Austin. According to the BBVA Foundation, “the pioneering work of the two physicists has achieved both the theoretical foundation and experimental validation of a new field where superconductivity, magnetism, and other properties can be obtained by rotating new two-dimensional materials like graphene.” Graphene is a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure.

Theoretical foundation, experimental validation

In a theoretical model published in 2011, MacDonald predicted that on twisting two graphene layers at a given angle, of around 1 degree, the interaction of electrons would produce new emerging properties.
 
In 2018, Jarillo-Herrero delivered the experimental confirmation of this “magic angle” by rotating two graphene sheets in a way that transformed the material’s behavior, giving rise to new properties like superconductivity.

The physicists’ work “has opened up new frontiers in physics by demonstrating that rotating matter to a given angle allows us to control its behavior, obtaining properties that could have a major industrial impact,” explained award committee member María José García Borge, a research professor at the Institute for the Structure of Matter. “Superconductivity, for example, could bring about far more sustainable electricity transmission, with virtually no energy loss.”

Almost science fiction

MacDonald’s initial discovery had little immediate impact. It was not until some years later, when it was confirmed in the laboratory by Jarillo-Herrero, that its true importance was revealed. 

“The community would never have been so interested in my subject, if there hadn’t been an experimental program that realized that original vision,” observes MacDonald, who refers to his co-laureate’s achievement as “almost science fiction.”

Jarillo-Herrero had been intrigued by the possible effects of placing two graphene sheets on top of each other with a precise rotational alignment, because “it was uncharted territory, beyond the reach of the physics of the past, so was bound to produce some interesting results.”

But the scientist was still unsure of how to make it work in the lab. For years, he had been stacking together layers of the super-thin material, but without being able to specify the angle between them. Finally, he devised a way to do so, making the angle smaller and smaller until he got to the “magic” angle of 1.1 degrees at which the graphene revealed some extraordinary behavior.

“It was a big surprise, because the technique we used, though conceptually straightforward, was hard to pull off in the lab,” says Jarillo-Herrero, who is also affiliated with the Materials Research Laboratory.

Since 2009, the BBVA has given Frontiers of Knowledge Awards to more than a dozen MIT faculty members. The Frontiers of Knowledge Awards, spanning eight prize categories, recognize world-class research and cultural creation and aim to celebrate and promote the value of knowledge as a global public good. The BBVA Foundation works to support scientific research and cultural creation, disseminate knowledge and culture, and recognize talent and innovation. 

Cancer’s secret safety net

MIT Latest News - Fri, 01/23/2026 - 3:40pm

Researchers in Class of 1942 Professor of Chemistry Matthew D. Shoulders’ lab have uncovered a sinister hidden mechanism that can allow cancer cells to survive (and, in some cases, thrive) even when hit with powerful drugs. The secret lies in a cellular “safety net” that gives cancer the freedom to develop aggressive mutations.

This fascinating intersection between molecular biology and evolutionary dynamics, published Jan. 22 on the cover of Molecular Cell, focuses on the most famous anti-cancer gene in the human body, TP53 (tumor protein 53, known as p53), and suggests that cancer cells don’t just mutate by accident — they create a specialized environment that makes dangerous mutations possible. 

The guardian under attack

Tasked with the job of stopping damaged cells from dividing, the p53 protein has been known for decades as the “guardian of the genome” and is the most mutated gene in cancer. Some of the most perilous of these mutations are known as “dominant-negative” variants. Not only do they stop working, but they actually prevent any healthy p53 in the cell from doing its job, essentially disarming the body’s primary defense system.

To function, p53 and most other proteins must fold into specific 3D shapes, much like precise cellular origami. Typically, if a mutation occurs that ruins this shape, the protein becomes a tangled mess, and the cell destroys it.

A specialized network of proteins, called cellular chaperones, help proteins fold into their correct shape, collectively known as the proteostasis network. 

“Many chaperone networks are known to be upregulated in cancer cells, for reasons that are not totally clear,” says Stephanie Halim, a graduate student in the Shoulders Group and co-first author of the study, along with Rebecca Sebastian PhD ’22. “We hypothesized that increasing the activities of these helpful protein folding networks can allow cancer cells to tolerate more mutations than a regular cell.”

The research team investigated a “helper” system in the cell called the proteostasis network. This network involves many proteins known as chaperones that help other proteins fold correctly. A master regulator called Heat Shock Factor 1 (HSF1) controls the composition of the proteostasis network, with HSF1 activity upregulating the network to create supportive protein folding environments in response to stress. In healthy cells, HSF1 stays dormant until heat or toxins appear. In cancer, HSF1 is often permanently in action mode.

To see how this works in real-time, the team created a specialized cancer cell line that let them chemically “turn up” the activity of HSF1 on demand. They then used a cutting-edge technique to express every possible singly mutated version of a p53 protein — testing thousands of different genetic “typos” at once.

The results were clear: When HSF1 was amplified, the cancer cells became much better at handling “bad” mutations. Normally, these specific mutations are so physically disruptive that they would cause the protein to collapse and fail. However, with HSF1 providing extra folding help, these unstable, cancer-driving proteins were able to stay intact and keep the cancer growing.

“These findings show that chaperone networks can reshape the fundamental mutational tolerance of the most mutated gene in cancer, linking proteostasis network activity directly to cancer development,” said Halim. “This work also puts us one step closer to understanding how tinkering with cellular protein folding pathways can help with cancer treatment.”

Unravelling cancer’s safety net

The study revealed that HSF1 activity specifically protects normally disruptive amino acid substitutions located deep inside the protein’s core — the most sensitive areas. Without this extra folding help, these substitutions would likely cause degradation of these proteins. With it, the cancer cell can keep these broken proteins around to help it grow.

This discovery helps explain why cancer is so resilient, and why previous attempts to treat cancer by blocking chaperone proteins (like HSP90, an abundant cellular chaperone) have been so complex. By understanding how cancer “buffers” its own bad mutations, doctors may one day be able to break that safety net, forcing the cancer’s own mutations to become its downfall.

The research was conducted in collaboration with the labs of professors Yu-Shan Lin of Tufts University; Francisco J. Sánchez-Rivera of the MIT Department of Biology; William C. Hahn, institute member of the Broad Institute of MIT and Harvard and professor of medicine in the Department of Medical Oncology at the Dana-Farber Cancer Institute and Harvard Medical School; and Marc L. Mendillo of Northwestern University.

Richard Hynes, a pioneer in the biology of cellular adhesion, dies at 81

MIT Latest News - Fri, 01/23/2026 - 2:45pm

MIT Professor Emeritus Richard O. Hynes PhD ’71, a cancer biologist whose discoveries reshaped modern understandings of how cells interact with each other and their environment, passed away on Jan. 6. He was 81.

Hynes is best known for his discovery of integrins, a family of cell-surface receptors essential to cell–cell and cell–matrix adhesion. He played a critical role in establishing the field of cell adhesion biology, and his continuing research revealed mechanisms central to embryonic development, tissue integrity, and diseases including cancer, fibrosis, thrombosis, and immune disorders.

Hynes was the Daniel K. Ludwig Professor for Cancer Research, Emeritus, an emeritus professor of biology, and a member of the Koch Institute for Integrated Cancer Research at MIT and the Broad Institute of MIT and Harvard. During his more than 50 years on the faculty at MIT, he was deeply respected for his academic leadership at the Institute and internationally, as well as his intellectual rigor and contributions as an educator and mentor.

“Richard had an enormous impact in his career. He was a visionary leader of the MIT Cancer Center, what is now the Koch Institute, during a time when the progress in understanding cancer was just starting to be translated into new therapies,” reflects Matthew Vander Heiden, director of the Koch Institute and the Lester Wolfe (1919) Professor of Molecular Biology. “The research from his laboratory launched an entirely new field by defining the molecules that mediate interactions between cells and between cells and their environment. This laid the groundwork for better understanding the immune system and metastasis.”

Pond skipper

Born in Kenya, Hynes grew up during the 1950s in Liverpool, in the United Kingdom. While he sometimes recounted stories of being schoolmates with two of the Beatles, and in the same Boy Scouts troop as Paul McCartney, his academic interests were quite different, and he specialized in the sciences at a young age. Both of his parents were scientists: His father was a freshwater ecologist, and his mother a physics teacher. Hynes and all three of his siblings followed their parents into scientific fields.

"We talked science at home, and if we asked questions, we got questions back, not answers. So that conditioned me into being a scientist, for sure," Hynes said of his youth.

He described his time as an undergraduate and master’s student at Cambridge University during the 1960s as “just fantastic,” noting that it was shortly after two 1962 Nobel Prizes were awarded to Cambridge researchers — one to Francis Crick and James Watson for the structure of DNA, the other to John Kendrew and Max Perutz for the structures of proteins — and Cambridge was “the place to be” to study biology.

Newly married, Hynes and his wife traded Cambridge, U.K. for Cambridge, Massachusetts, so that he could conduct doctoral work at MIT under the direction of Paul Gross. He tried (and by his own assessment, failed) to differentiate maternal messages among the three germ layers of sea urchin embryos. However, he did make early successful attempts to isolate the globular protein tubulin, a building block for essential cellular structures, from sea urchins.

Inspired by a course he had taken with Watson in the United States, Hynes began work during his postdoc at the Institute of Cancer Research in the U.K. on the early steps of oncogenic transformation and the role of cell migration and adhesion; it was here that he made his earliest discovery and characterizations of the fibronectin protein.

Recruited back to MIT by Salvador Luria, founding director of the MIT Center for Cancer Research, whom he had met during a summer at Woods Hole Oceanographic Institute on Cape Cod, Hynes returned to the Institute in 1975 as a founding faculty member of the center and an assistant professor in the Department of Biology.

Big questions about tiny cells

To his own research, Hynes brought the same spirit of inquiry that had characterized his upbringing, asking fundamental questions: How do cells interact with each other? How do they stick together to form tissues?

His research focused on proteins that allow cells to adhere to each other and to the extracellular matrix — a mesh-like network that surrounds cells, providing structural support, as well as biochemical and mechanical cues from the local microenvironment. These proteins include integrins, a type of cell surface receptor, and fibronectins, a family of extracellular adhesive proteins. Integrins are the major adhesion receptors connecting the extracellular matrix to the intracellular cytoskeleton, or main architectural support within the cell.

Hynes began his career as a developmental biologist, studying how cells move to the correct locations during embryonic development. During this stage of development, proper modulation of cell adhesion is critical for cells to move to the correct locations in the embryo.

Hynes’ work also revealed that dysregulation of cell-to-matrix contact plays an important role in cancer cells’ ability to detach from a tumor and spread to other parts of the body, key steps in metastasis.

As a postdoc, Hynes had begun studying the differences in the surface landscapes of healthy cells and tumor cells. It was this work that led to the discovery of fibronectin, which is often lost when cells become cancerous.

He and others found that fibronectin is an important part of the extracellular matrix. When fibronectin is lost, cancer cells can more easily free themselves from their original location and metastasize to other sites in the body. By studying how fibronectin normally interacts with cells, Hynes and others discovered a family of cell surface receptors known as integrins, which function as important physical links with the extracellular matrix. In humans, 24 integrin proteins have been identified. These proteins help give tissues their structure, enable blood to clot, and are essential for embryonic development.

“Richard’s discoveries, along with others’, of cell surface integrins led to the development of a number of life-altering treatments. Among these are treatment of autoimmune diseases such as multiple sclerosis,” notes longtime colleague Phillip Sharp, MIT Institute professor emeritus.

As research technologies advanced, including proteomic and extracellular matrix isolation methods developed directly in Hynes’ laboratory, he and his group were able to uncover increasingly detailed information about specific cell adhesion proteins, the biological mechanisms by which they operate, and the roles they play in normal biology and disease.

In cancer, their work helped to uncover how cell adhesion (and the loss thereof) and the extracellular matrix contribute not only to fundamental early steps in the metastatic process, but also tumor progression, therapeutic response, and patient prognosis. This included studies that mapped matrix protein signatures associated with cancer and non-cancer cells and tissues, followed by investigations into how differentially expressed matrix proteins can promote or suppress cancer progression. 

Hynes and his colleagues also demonstrated how extracellular matrix composition can influence immunotherapy, such as the importance of a family of cell adhesion proteins called selectins for recruiting natural killer cells to tumors. Further, Hynes revealed links between fibronectin, integrins, and other matrix proteins with tumor angiogenesis, or blood vessel development, and also showed how interaction with platelets can stimulate tumor cells to remodel the extracellular matrix to support invasion and metastasis. In pursuing these insights into the oncogenic mechanisms of matrix proteins, Hynes and members of his laboratory have identified useful diagnostic and prognostic biomarkers, as well as therapeutic targets.

Along the way, Hynes shaped not only the research field, but also the careers of generations of trainees.

“There was much to emulate in Richard’s gentle, patient, and generous approach to mentorship. He centered the goals and interests of his trainees, fostered an inclusive and intellectually rigorous environment, and cared deeply about the well-being of his lab members. Richard was a role model for integrity in both personal and professional interactions and set high expectations for intellectual excellence,” recalls Noor Jailkhani, a former Hynes Lab postdoc.

Jailkhani is CEO and co-founder, with Hynes, of Matrisome Bio, a biotech company developing first-in-class targeted therapies for cancer and fibrosis by leveraging the extracellular matrix. “The impact of his long and distinguished scientific career was magnified through the generations of trainees he mentored, whose influence spans academia and the biotechnology industry worldwide. I believe that his dedication to mentorship stands among his most far-reaching and enduring contributions,” she says.

A guiding light

Widely sought for his guidance, Hynes served in a number of key roles at MIT and in the broader scientific community. As head of MIT’s Department of Biology from 1989 to 1991, then a decade as director of the MIT Center for Cancer Research, his leadership has helped shape the Institute’s programs in both areas.

“Words can’t capture what a fabulous human being Richard was. I left every interaction with him with new insights and the warm glow that comes from a good conversation,” says Amy Keating, the Jay A. Stein (1968) Professor, professor of biology and biological engineering, and head of the Department of Biology. “Richard was happy to share stories, perspectives, and advice, always with a twinkle in his eye that conveyed his infinite interest in and delight with science, scientists, and life itself. The calm support that he offered me, during my years as department head, meant a lot and helped me do my job with confidence.”

Hynes served as director of the MIT Center for Cancer Research from 1991 until 2001, positioning the center’s distinguished cancer biology program for expansion into its current, interdisciplinary research model as MIT’s Koch Institute for Integrative Cancer Research. “He recruited and strongly supported Tyler Jacks to the faculty, who subsequently became director and headed efforts to establish the Koch Institute,” recalls Sharp.

Jacks, a David H. Koch (1962) Professor of Biology and founding director of the Koch Institute, remembers Hynes as a thoughtful, caring, and highly effective leader in the Center for Cancer Research, or CCR, and in the Department of Biology. “I was fortunate to be able to lean on him when I took over as CCR director. He encouraged me to drop in — unannounced — with questions and concerns, which I did regularly. I learned a great deal from Richard, at every level,” he says.

Hynes’ leadership and recognition extended well beyond MIT to national and international contexts, helping to shape policy and strengthen connections between MIT researchers and the wider field. He served as a scientific governor of the Wellcome Trust, a global health research and advocacy foundation based in the United Kingdom, and co-chaired U.S. National Academy committees establishing guidelines for stem cell and genome editing research.

“Richard was an esteemed scientist, a stimulating colleague, a beloved mentor, a role model, and to me a partner in many endeavors both within and beyond MIT,” notes H. Robert Horvitz, a David H. Koch (1962) Professor of Biology. He was a wonderful human being, and a good friend. I am sad beyond words at his passing.”

Awarded Howard Hughes medical investigator status in 1988, Hynes’ research and leadership have since been recognized with a number of other notable honors. Most recently, he received the 2022 Albert Lasker Basic Medical Research Award, which he shared with Erkki Ruoslahti of Sanford Burnham Prebys and Timothy Springer of Harvard University, for his discovery of integrins and pioneering work in cell adhesion.

His other awards include the Canada Gairdner International Award, the Distinguished Investigator Award from the International Society for Matrix Biology, the Robert and Claire Pasarow Medical Research Award, the E.B. Wilson Medal from the American Society for Cell Biology, the David Rall Medal from the National Academy of Medicine and the Paget-Ewing Award from the Metastasis Research Society. Hynes was a member of the National Academy of Sciences, the National Academy of Medicine, the Royal Society of London, the American Association for the Advancement of Science, and the American Academy of Arts and Sciences.

Easily recognized by a commanding stature that belied his soft-spoken nature, Hynes was known around MIT’s campus not only for his acuity, integrity, and wise counsel, but also for his community spirit and service. From serving food at community socials to moderating events and meetings or recognizing the success of colleagues and trainees, his willingness to help spanned roles of every size.

“Richard was a phenomenal friend and colleague. He approached complex problems with a thoughtfulness and clarity that few can achieve,” notes Vander Heiden. “He was also so generous in his willingness to provide help and advice, and did so with a genuine kindness that was appreciated by everyone.”

Hynes is survived by his wife Fleur, their sons Hugh and Colin and their partners, and four grandchildren.

AIs are Getting Better at Finding and Exploiting Internet Vulnerabilities

Schneier on Security - Fri, 01/23/2026 - 7:01am

Really interesting blog post from Anthropic:

In a recent evaluation of AI models’ cyber capabilities, current Claude models can now succeed at multistage attacks on networks with dozens of hosts using only standard, open-source tools, instead of the custom tools needed by previous generations. This illustrates how barriers to the use of AI in relatively autonomous cyber workflows are rapidly coming down, and highlights the importance of security fundamentals like promptly patching known vulnerabilities.

[…]

A notable development during the testing of Claude Sonnet 4.5 is that the model can now succeed on a minority of the networks without the custom cyber toolkit needed by previous generations. In particular, Sonnet 4.5 can now exfiltrate all of the (simulated) personal information in a high-fidelity simulation of the Equifax data breach—­one of the costliest cyber attacks in history—­using only a Bash shell on a widely-available Kali Linux host (standard, open-source tools for penetration testing; not a custom toolkit). Sonnet 4.5 accomplishes this by instantly recognizing a publicized CVE and writing code to exploit it without needing to look it up or iterate on it. Recalling that the original Equifax breach happened by exploiting a publicized CVE that had not yet been patched, the prospect of highly competent and fast AI agents leveraging this approach underscores the pressing need for security best practices like prompt updates and patches. ...

Anxious greens await death of endangerment finding

ClimateWire News - Fri, 01/23/2026 - 6:52am
Environmental groups are planning protests to oppose EPA’s upcoming move to repeal the scientific finding.

Massive snowstorm will test Trump’s strategy on disaster aid

ClimateWire News - Fri, 01/23/2026 - 6:51am
Presidents have routinely approved federal assistance after major storms, but state officials worry President Donald Trump won't do that.

Colorado governor is latest to appeal Trump’s denial of disaster aid

ClimateWire News - Fri, 01/23/2026 - 6:49am
Democrat Jared Polis has the bipartisan support of his state’s 10-member congressional delegation.

Greens challenge DOE order to keep open Indiana coal plants

ClimateWire News - Fri, 01/23/2026 - 6:48am
The complaint sets the stage for a larger legal battle over President Donald Trump's efforts to revive the coal industry.

Sheldon Whitehouse takes on ‘climate hushers’ in the Democratic Party

ClimateWire News - Fri, 01/23/2026 - 6:47am
The Rhode Island Democrat isn't happy with colleagues moving away from talking about climate change.

Environmental justice groups assail overhaul of California carbon market

ClimateWire News - Fri, 01/23/2026 - 6:47am
Advocates charge that California pollution regulators ignored their plea to end a program that they say discourages emissions reductions.

India is electrifying faster than China using cheap green tech

ClimateWire News - Fri, 01/23/2026 - 6:43am
It’s a sign that clean electricity could be the most direct way to boost growth for other developing economies.

UK extends $1B climate-pact guarantee to South Africa

ClimateWire News - Fri, 01/23/2026 - 6:42am
Its extension comes as South Africa negotiates with the African Development Bank over a $400 million loan for municipal energy and water services, to be guaranteed by the U.K. under that arrangement.

How a small town is rising from Chile’s devastating wildfires

ClimateWire News - Fri, 01/23/2026 - 6:42am
Lirquén was ground zero for the inferno, which engulfed 80 percent of its land.

US pensions lack strong climate strategies, Sierra Club says

ClimateWire News - Fri, 01/23/2026 - 6:41am
The findings underscore a long-running debate on Wall Street over whether asset owners, including pension funds, should adopt investment strategies aimed at limiting climate risks and supporting adaptation to a warming world.

Rent-Only Copyright Culture Makes Us All Worse Off

EFF: Updates - Thu, 01/22/2026 - 7:27pm

We're taking part in Copyright Week, a series of actions and discussions supporting key principles that should guide copyright policy. Every day this week, various groups are taking on different elements of copyright law and policy, and addressing what's at stake, and what we need to do to make sure that copyright promotes creativity and innovation.

In the Netflix/Spotify/Amazon era, many of us access copyrighted works purely in digital form – and that means we rarely have the chance to buy them. Instead, we are stuck renting them, subject to all kinds of terms and conditions. And because the content is digital, reselling it, lending it, even preserving it for your own use inevitably requires copying. Unfortunately, when it comes to copying digital media, US copyright law has pretty much lost the plot.

As we approach the 50th anniversary of the 1976 Copyrights, the last major overhaul of US copyright law, we’re not the only ones wondering if it’s time for the next one. It’s a high-risk proposition, given the wealth and influence of entrenched copyright interests who will not hesitate to send carefully selected celebrities to argue for changes that will send more money, into fewer pockets, for longer terms. But it’s equally clear that and nowhere is that more evident than the waning influence of Section 109, aka the first sale doctrine.

First sale—the principle that once you buy a copyrighted work you have the right to re-sell it, lend it, hide it under the bed, or set it on fire in protest—is deeply rooted in US copyright law. Indeed, in an era where so many judges are looking to the Framers for guidance on how to interpret current law, it’s worth noting that the first sale principles (also characterized as “copyright exhaustion”) can be found in the earliest copyright cases and applied across the rights in the so-called “copyright bundle.”

Unfortunately, courts have held that first sale, at least as it was codified in the Copyright Act, only applies to distribution, not reproduction. So even if you want to copy a rented digital textbook to a second device, and you go through the trouble of deleting it from the first device, the doctrine does not protect you.

We’re all worse off as a result. Our access to culture, from hit songs to obscure indie films, are mediated by the whims of major corporations. With physical media the first sale principle built bustling second hand markets, community swaps, and libraries—places where culture can be shared and celebrated, while making it more affordable for everyone.

And while these new subscription or rental services have an appealing upfront cost, it comes with a lot more precarity. If you love rewatching a show, you may be chasing it between services or find it is suddenly unavailable on any platform. Or, as fans of Mad Men or Buffy the Vampire Slayer know, you could be stuck with a terrible remaster as the only digital version available

Last year we saw one improvement with California Assembly Bill 2426 taking effect. In California companies must now at least disclose to potential customers if a “purchase” is a revocable license—i.e. If they can blow it up after you pay. A story driving this change was Ubisoft revoking access to “The Crew” and making customers’ copies unplayable a decade after launch. 

On the federal level, EFF, Public Knowledge, and 15 other public interest organizations backed Sen. Ron Wyden’s message to the FTC to similarly establish clear ground rules for digital ownership and sales of goods. Unfortunately FTC Chairman Andrew Ferguson has thus far turned down this easy win for consumers.

As for the courts, some scholars think they have just gotten it wrong. We agree, but it appears we need Congress to set them straight. The Copyright Act might not need a complete overhaul, but Section 109 certainly does. The current version hurts consumers, artists, and the millions of ordinary people who depend on software and digital works every day for entertainment, education, transportation, and, yes, to grow our food. 

We realize this might not be the most urgent problem Congress confronts in 2026—to be honest, we wish it was—but it’s a relatively easy one to solve. That solution could release a wave of new innovation, and equally importantly, restore some degree of agency to American consumers by making them owners again.

Biology-based brain model matches animals in learning, enables new discovery

MIT Latest News - Thu, 01/22/2026 - 5:00pm

A new computational model of the brain based closely on its biology and physiology not only learned a simple visual category learning task exactly as well as lab animals, but even enabled the discovery of counterintuitive activity by a group of neurons that researchers working with animals to perform the same task had not noticed in their data before, says a team of scientists at Dartmouth College, MIT, and the State University of New York at Stony Brook.

Notably, the model produced these achievements without ever being trained on any data from animal experiments. Instead, it was built from scratch to faithfully represent how neurons connect into circuits and then communicate electrically and chemically across broader brain regions to produce cognition and behavior. Then, when the research team asked the model to perform the same task that they had previously performed with the animals (looking at patterns of dots and deciding which of two broader categories they fit), it produced highly similar neural activity and behavioral results, acquiring the skill with almost exactly the same erratic progress.

“It’s just producing new simulated plots of brain activity that then only afterward are being compared to the lab animals. The fact that they match up as strikingly as they do is kind of shocking,” says Richard Granger, a professor of psychological and brain sciences at Dartmouth and senior author of a new study in Nature Communications that describes the model.

A goal in making the model, and newer iterations developed since the paper was written, is not only to offer insight into how the brain works, but also how it might work differently in disease and what interventions could correct those aberrations, adds co-author Earl K. Miller, Picower Professor in The Picower Institute for Learning and Memory at MIT. Miller, Granger, and other members of the research team have founded the company Neuroblox.ai to develop the models’ biotech applications. Co-author Lilianne R. Mujica-Parodi, a biomedical engineering professor at Stony Brook who is lead principal investigator for the Neuroblox Project, is CEO of the company.

“The idea is to make a platform for biomimetic modeling of the brain so you can have a more efficient way of discovering, developing, and improving neurotherapeutics. Drug development and efficacy testing, for example, can happen earlier in the process, on our platform, before the risk and expense of clinical trials,” says Miller, who is also a faculty member of MIT’s Department of Brain and Cognitive Sciences.

Making a biomimetic model

Dartmouth postdoc Anand Pathak created the model, which differs from many others in that it incorporates both small details, such as how individual pairs of neurons connect with each other, and large-scale architecture, including how information processing across regions is affected by neuromodulatory chemicals such as acetylcholine. Pathak and the team iterated their designs to ensure they obeyed various constraints observed in real brains, such as how neurons become synchronized by broader rhythms. Many other models focus only on the small or big scales, but not both, he says.

“We didn’t want to lose the tree, and we didn’t want to lose the forest,” Pathak says.

The metaphorical “trees,” called “primitives” in the study, are small circuits of a few neurons each that connect based on electrical and chemical principles of real cells to perform fundamental computational functions. For example, within the model’s version of the brain’s cortex, one primitive design has excitatory neurons that receive input from the visual system via synapse connections affected by the neurotransmitter glutamate. Those excitatory neurons then densely connect with inhibitory neurons in a competition to signal them to shut down the other excitatory neurons — a “winner-take-all” architecture found in real brains that regulates information processing.

At a larger scale, the model encompasses four brain regions needed for basic learning and memory tasks: a cortex, a brainstem, a striatum, and a “tonically active neuron” (TAN) structure that can inject a little “noise” into the system via bursts of aceytlcholine. For instance, as the model engaged in the task of categorizing the presented patterns of dots, the TAN at first ensured some variability in how the model acted on the visual input so that the model could learn by exploring varied actions and their outcomes. As the model continued to learn, cortex and striatum circuits strengthened connections that suppressed the TAN, enabling the model to act on what it was learning with increasing consistency.

As the model engaged in the learning task, real-world properties emerged, including a dynamic that Miller has commonly observed in his research with animals. As learning progressed, the cortex and striatum became more synchronized in the “beta” frequency band of brain rhythms, and this increased synchrony correlated with times when the model (and the animals) made the correct category judgement about what they were seeing.

Revealing “incongruent” neurons

But the model also presented the researchers with a group of neurons — about 20 percent — whose activity appeared highly predictive of error. When these so-called “incongruent” neurons influenced circuits, the model would make the wrong category judgement. At first, Granger says, the team figured it was a quirk of the model. But then they looked at the real-brain data Miller’s lab accumulated when animals performed the same task.

“Only then did we go back to the data we already had, sure that this couldn’t be in there because somebody would have said something about it, but it was in there, and it just had never been noticed or analyzed,” he says.

Miller says these counterintuitive cells might serve a purpose: it’s all well and good to learn the rules of a task, but what if the rules change? Trying out alternatives from time to time can enable a brain to stumble upon a newly emerging set of conditions. Indeed, a separate Picower Institute lab recently published evidence that humans and other animals do this sometimes.

While the model described in the new paper performed beyond the team’s expectations, Granger says, the team has been expanding it to make it sophisticated enough to handle a greater variety of tasks and circumstances. For instance, they have added more regions and new neuromodulatory chemicals. They’ve also begun to test how interventions such as drugs affect its dynamics.

In addition to Granger, Miller, Pathak and Mujica-Parodi, the paper’s other authors are Scott Brincat, Haris Organtzidis, Helmut Strey, Sageanne Senneff, and Evan Antzoulatos.  

The Baszucki Brain Research Fund, United States, the Office of Naval Research, and the Freedom Together Foundation provided support for the research.

Akorfa Dagadu named 2027 Schwarzman Scholar

MIT Latest News - Thu, 01/22/2026 - 4:40pm

MIT undergraduate Akorfa Dagadu has been named a Schwarzman Scholar and will join the program’s Class of 2026-27 scholars from 40 countries and 83 universities. This year’s 150 Schwarzman Scholars were selected for their leadership potential from a pool of over 5,800 applicants, the highest number in the Schwarzman Scholarship’s 11-year history.

Schwarzman Scholars pursue a one-year, fully funded master’s degree program in global affairs at Schwarzman College, Tsinghua University, in Beijing, China. The graduate curriculum focuses on the pillars of leadership, global affairs, and China, with additional opportunities for cultural immersion, experiential learning, and professional development. The program aims to build a global network of leaders with a well-rounded understanding of China’s evolving role in the world.

Hailing from Ghana, Dagadu is a senior majoring in chemical-biological engineering. At MIT, she researches how enzyme-polymer systems can be designed to break down plastics at end-of-life, work that has been recognized internationally through publications and awards, including the CellPress Rising Scientist Award.

Dagadu is the founder of Ishara, a venture transforming recycling in Ghana by connecting informal waste pickers to transparent, efficient systems with potential to scale across growth markets. She aspires to establish a materials innovation hub in Africa to address the end-of-life of materials, from plastics to e-waste.

MIT’s Schwarzman Scholar applicants receive guidance and mentorship from the distinguished fellowships team in MIT Career Advising and Professional Development, as well as the Presidential Committee on Distinguished Fellowships. Students and alumni interested in learning more should contact Kimberly Benard, associate dean and director of distinguished fellowships and academic excellence.

Pages