Feed aggregator

EU closes deal to slash green rules in win for von der Leyen’s deregulation push

ClimateWire News - Wed, 12/10/2025 - 6:07am
The controversial “omnibus” bill saw center-right EU lawmakers side with the far right to water down environmental standards.

Zillow deleting home climate risk scores reveals limits of flood, fire data

ClimateWire News - Wed, 12/10/2025 - 6:06am
The ratings are far from perfect, a growing body of research shows, with different models often yielding different results.

IMF OKs $1.2B for Pakistan, citing progress on economic, climate reforms

ClimateWire News - Wed, 12/10/2025 - 6:06am
The bailout aims to rebuild the country's reserves, strengthen its tax system and reform loss-making state-owned companies.

When it comes to language, context matters

MIT Latest News - Wed, 12/10/2025 - 12:00am

In everyday conversation, it’s critical to understand not just the words that are spoken, but the context in which they are said. If it’s pouring rain and someone remarks on the “lovely weather,” you won’t understand their meaning unless you realize that they’re being sarcastic.

Making inferences about what someone really means when it doesn’t match the literal meaning of their words is a skill known as pragmatic language ability. This includes not only interpreting sarcasm but also understanding metaphors and white lies, among many other conversational subtleties.

“Pragmatics is trying to reason about why somebody might say something, and what is the message they’re trying to convey given that they put it in this particular way,” says Evelina Fedorenko, an MIT associate professor of brain and cognitive sciences and a member of MIT’s McGovern Institute for Brain Research.

New research from Fedorenko and her colleagues has revealed that these abilities can be grouped together based on what types of inferences they require. In a study of 800 people, the researchers identified three clusters of pragmatic skills that are based on the same kinds of inferences and may have similar underlying neural processes.

One of these clusters includes inferences that are based on our knowledge of social conventions and rules. Another depends on knowledge of how the physical world works, while the last requires the ability to interpret differences in tone, which can indicate emphasis or emotion.

Fedorenko and Edward Gibson, an MIT professor of brain and cognitive sciences, are the senior authors of the study, which appears today in the Proceedings of the National Academy of Sciences. The paper’s lead authors are Sammy Floyd, a former MIT postdoc who is now an assistant professor of psychology at Sarah Lawrence College, and Olessia Jouravlev, a former MIT postdoc who is now an associate professor of cognitive science at Carleton University.

The importance of context

Much past research on how people understand language has focused on processing the literal meanings of words and how they fit together. To really understand what someone is saying, however, we need to interpret those meanings based on context.

“Language is about getting meanings across, and that often requires taking into account many different kinds of information — such as the social context, the visual context, or the present topic of the conversation,” Fedorenko says.

As one example, the phrase “people are leaving” can mean different things depending on the context, Gibson points out. If it’s late at night and someone asks you how a party is going, you may say “people are leaving,” to convey that the party is ending and everyone’s going home.

“However, if it’s early, and I say ‘people are leaving,’ then the implication is that the party isn’t very good,” Gibson says. “When you say a sentence, there’s a literal meaning to it, but how you interpret that literal meaning depends on the context.”

About 10 years ago, with support from the Simons Center for the Social Brain at MIT, Fedorenko and Gibson decided to explore whether it might be possible to precisely distinguish the types of processing that go into pragmatic language skills.

One way that neuroscientists can approach a question like this is to use functional magnetic resonance imaging (fMRI) to scan the brains of participants as they perform different tasks. This allows them to link brain activity in different locations to different functions. However, the tasks that the researchers designed for this study didn’t easily lend themselves to being performed in a scanner, so they took an alternative approach.

This approach, known as “individual differences,” involves studying a large number of people as they perform a variety of tasks. This technique allows researchers to determine whether the same underlying brain processes may be responsible for performance on different tasks.

To do this, the researchers evaluate whether each participant tends to perform similarly on certain groups of tasks. For example, some people might perform well on tasks that require an understanding of social conventions, such as interpreting indirect requests and irony. The same people might do only so-so on tasks that require understanding how the physical world works, and poorly on tasks that require distinguishing meanings based on changes in intonation — the melody of speech. This would suggest that separate brain processes are being recruited for each set of tasks.

The first phase of the study was led by Jouravlev, who assembled existing tasks that require pragmatic skills and created many more, for a total of 20. These included tasks that require people to understand humor and sarcasm, as well as tasks where changes in intonation can affect the meaning of a sentence. For example, someone who says “I wanted blue and black socks,” with emphasis on the word “black,” is implying that the black socks were forgotten.

“People really find ways to communicate creatively and indirectly and non-literally, and this battery of tasks captures that,” Floyd says.

Components of pragmatic ability

The researchers recruited study participants from an online crowdsourcing platform to perform the tasks, which took about eight hours to complete. From this first set of 400 participants, the researchers found that the tasks formed three clusters, related to social context, general knowledge of the world, and intonation. To test the robustness of the findings, the researchers continued the study with another set of 400 participants, with this second half run by Floyd after Jouravlev had left MIT.

With the second set of participants, the researchers found that tasks clustered into the same three groups. They also confirmed that differences in general intelligence, or in auditory processing ability (which is important for the processing of intonation), did not affect the outcomes that they observed.

In future work, the researchers hope to use brain imaging to explore whether the pragmatic components they identified are correlated with activity in different brain regions. Previous work has found that brain imaging often mirrors the distinctions identified in individual difference studies, but can also help link the relevant abilities to specific neural systems, such as the core language system or the theory of mind system.

This set of tests could also be used to study people with autism, who sometimes have difficulty understanding certain social cues. Such studies could determine more precisely the nature and extent of these difficulties. Another possibility could be studying people who were raised in different cultures, which may have different norms around speaking directly or indirectly.

“In Russian, which happens to be my native language, people are more direct. So perhaps there might be some differences in how native speakers of Russian process indirect requests compared to speakers of English,” Jouravlev says.

The research was funded by the Simons Center for the Social Brain at MIT, the National Institutes of Health, and the National Science Foundation. 

MIT takes manufacturing education across the country

MIT Latest News - Wed, 12/10/2025 - 12:00am

MIT has long bolstered U.S. manufacturing by developing key innovations and production technologies, and training entrepreneurs. This fall, the Institute introduced a new tool for U.S. manufacturing: an education program for workers, held at collaborating institutions, which teaches core principles of production, helping employees and firms alike.

The new effort, the Technologist Advanced Manufacturing Program, or TechAMP, developed with U.S. Department of Defense funding, features a mix of in-person lab instruction at participating institutions, online lectures by MIT faculty and staff, and interactive simulations. There are also capstone projects, in which employees study manufacturing issues with the aim of saving their firms money.

Ultimately, TechAMP is a 12-month certificate program aimed at making the concept of the accredited “technologist” a vital part of the manufacturing enterprise. That could help workers advance in their careers. And it could help firms develop a more skilled workforce.

“We think there’s a gap between the traditional worker categories of engineer and technician, and this technologist training fills it,” says John Liu, a principal research scientist in MIT’s Department of Mechanical Engineering and co-principal investigator of the TechAMP program. “We’re very interested in creating new career pathways and allowing the manufacturing workforce to have a different kind of perspective. We want to formalize the path to becoming a technologist.”

Liu, who is also the principal investigator of the MIT Learning Engineering and Practice Group (LEAP), adds that the MIT program “is a pathway to leadership. No longer should a technician just think about one piece of equipment. They can think about the whole system, the whole operation, and help with decision-making.”

TechAMP launched this fall, in collaboration with multiple institutions, including the University of Massachusetts at Lowell, Cape Cod Community College, Ohio State University, the Community College of Rhode Island, the Connecticut Center for Advanced Technology, and the Berkshire Innovation Center in Pittsfield, Massachusetts. More than 70 people are in the initial cohort of students.

“MIT has embraced the idea that we’re reaching this new type of learner,” says Julie Diop, executive director of MIT’s Initiative for New Manufacturing (INM). TechAMP forms a key part of the education arm of that initiative, a campus-wide effort to reinvigorate U.S. manufacturing that was announced in May 2025. INM also collaborates with several industry firms embracing innovative approaches to manufacturing.

“Through TechAMP and other programs, we’re excited to reach beyond MIT’s traditional realm of manufacturing education and collaborate with companies of all sizes alongside our community college partners,” says John Hart, the Class of 1922 Professor of Mechanical Engineering, head of the Department of Mechanical Engineering at MIT, and faculty co-director of INM. “We hope that the program equips manufacturing technologists to be innovators and problem-solvers in their organizations, and to effectively deploy new technologies that can improve manufacturing productivity.”

INM is one of the key Institute-wide initiatives prioritized by MIT President Sally A. Kornbluth.

“Helping America build a future of new manufacturing is a perfect job for MIT,” Kornbluth said at the INM launch event in May. She continued: “I’m convinced that there is no more important work we can do to meet the moment and serve the nation now.”

A “confidence booster” for workers

TechAMP has been supported by two Department of Defense grants enabling the program’s development. MIT scholars collaborated with colleagues at Clemson University and Ohio State University to develop a number of the interactive simulations used in the course.

The course work is based around a “hub-and-spoke” model that includes segments on core principles of manufacturing — that’s the hub — as well as six areas, or spokes, where companies have advised MIT that workers need more training.

The four parts of the hub comprise manufacturing process controls and their statistical analysis; understanding manufacturing systems, including workflow and efficiency; leadership skills; and operations management, from factory analysis to supply chain issues. These are also the core issues studied in MIT’s online micromaster’s certificate in manufacturing.

The six spokes may change or expand over time but currently consist of mechatronics, automation programming, robotics, machining, digital manufacturing, and design and manufacturing fundamentals.

Having the TechAMP curriculum revolve around concepts common to all manufacturing industries helps technologists-in-training better understand how their companies are trying to function and how their own work relates to those principles.

“The hub concepts are what defines manufacturing,” Liu says. “We need to teach this undervalued set of principles to the workforce, including people without university degrees. If we do that, it means they have a timeless set of ideas. We can adapt ourselves to add industries like biomanufacturing, but we’re starting with the fundamentals.”

Students say they are enjoying the program.

“It’s been a confidence booster,” says Nicole Swan, an employee at the manufacturing firm Proterial, who is taking the TechAMP class at the Community College of Rhode Island campus in Westerly, Rhode Island. “This has really shown me so many different opportunities [for] what I could do in the future, and different avenues that are available.”

Direct value capture possible for firms

The TechAMP certificate program also involves a capstone project, in which the students try to analyze issues or challenges within their own firms. Ideally, if those projects lead to savings or add value, that could make it well worthwhile for manufacturing companies to pay for their students to attend the TechAMP program — which is about 10 to 14 hours of work per week, for the year.

“That could be a form of impact — direct value capture for the firm,” Diop says.

Some firms are already pleased with the development of TechAMP.

“There are so many manufacturing jobs that don’t need a four-year degree, but do require a very high skill level and good communications skills,” says Michael Trotta, CEO of Crystal Engineering, a versatile, 45-employee manufacturer in Newburyport, Massachusetts, whose products range from medical devices to aerospace and defense items. “I see TechAMP as a next logical step in developing a sustainable workforce."

Trotta and three of his employees worked with MIT on the TechAMP project last spring, studying the curriculum material and providing feedback about it to the program leaders, in an effort to make the coursework as useful as possible.

"What we want workers to do is progress to a point where they become that technologist making not $20 an hour, but $40 or $50 an hour, because they have that skill set to run a lot more than just one piece of the process,” Trotta explains. “They’re able to communicate effectively with the engineers, with operations, to identify strengths and weaknesses, to help the firm drive success."

And while the position of “technologist” may not yet be in every manufacturer’s vocabulary yet, the MIT program leaders think it makes eminent sense, as a way of further equipping workers who are currently regarded as technicians or machinists.

By analogy, Diop observes, “The role of nurse practitioner bridges the gap between nurse and doctor, and has changed how medicine is delivered.” Manufacturing, she adds, “has had a reputation for dead-end jobs, but if MIT can help break that image by providing a real pathway, I think that would be meaningful, especially for those without university degrees.”

Intriguingly — as shown by research from Ben Armstrong, executive director and a research scientist at MIT’s Industrial Performance Center — about 10 to 15 percent of titled engineers in manufacturing industries do not have engineering degrees, either. For that portion of the workforce as well, more formal training and credentials may prove useful over time.

TechAMP is new, evolving — and likely to be expanding soon. Diop and Liu are in talks with interested education networks in multiple manufacturing-heavy states, to see if they would like to partner with MIT. There is also new interest from more manufacturers, including some of the partners in MIT’s Initiative for New Manufacturing. Given that the initiative just launched in May, TechAMP has hit the ground running.

“There’s been a lot of excitement so far, we think,” Liu says. “And it’s coming from organizations and people who are eager to learn more.”  

Jennifer Lewis ScD ’91: “Can we make tissues that are made from you, for you?”

MIT Latest News - Tue, 12/09/2025 - 5:20pm

“Can we make tissues that are made from you, for you?” asked Jennifer Lewis ScD ’91 at the 2025 Mildred S. Dresselhaus Lecture, organized by MIT.nano, on Nov. 3. “The grand challenge goal is to create these tissues for therapeutic use and, ultimately, at the whole organ scale.”

Lewis, the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard University, is pursuing that challenge through advances in 3D printing. In her talk presented to a combined in-person and virtual audience of over 500 attendees, Lewis shared work from her lab that focuses on enhanced function in 3D printed components for use in soft electronics, robotics, and life sciences.

“How you make a material affects its structure, and it affects its properties,” said Lewis. “This perspective was a light bulb moment for me, to think about 3D printing beyond just prototyping and making shapes, but really being able to control local composition, structure, and properties across multiple scales.”

A trained materials scientist, Lewis reflected on learning to speak the language of biologists when she joined Harvard to start her own lab focused on bioprinting and biological engineering. How does one compare particles and polymers to stem cells and extracellular matrices? A key commonality, she explained, is the need for a material that can be embedded and then erased, leaving behind open channels. To meet this need, Lewis’ lab developed new 3D printing methods, sophisticated printhead designs, and viscoelastic inks — meaning the ink can go back and forth between liquid and solid form.

Displaying a video of a moving robot octopus named Octobot, Lewis showed how her group engineered two sacrificial inks that change from fluid to solid upon either warming or cooling. The concept draws inspiration from nature — plants that dynamically change in response to touch, light, heat, and hydration. For Octobot, Lewis’ team used sacrificial ink and an embedded printing process that enables free-form printing in three dimensions, rather than layer-by-layer, to create a fully soft autonomous robot. An oscillating circuit in the center guides the fuel (hydrogen peroxide), making the arms move up and down as they inflate and deflate.

From robots to whole organ engineering

“How can we leverage shape morphing in tissue engineering?” asked Lewis. “Just like our blood continuously flows through our body, we could have continuous supply of healing.”

Lewis’ lab is now working on building human tissues, primarily cardiac, kidney, and cerebral tissue, using patient-specific cells. The motivation, Lewis explained, is not only the need for human organs for people with diseases, but the fact that receiving a donated organ means taking immunosuppressants the rest of your life. If, instead, the tissue could be made from your own cells, it would be a stronger match to your own body.

“Just like we did to engineer viscoelastic matrices for embedded printing of functional and structural materials,” said Lewis, “we can take stem cells and then use our sacrificial writing method to write in perfusable vasculature.” The process uses a technique Lewis calls SWIFT — sacrificial writing into functional tissue. Sharing lab results, Lewis showed how the stem cells, differentiated into cardiac building blocks, are initially beating individually, but after being packed into a tighter space that will support SWIFT, these building blocks fuse together and become one tissue that beats synchronously. Then, her team uses a gelatin ink that solidifies or liquefies with temperature changes to print the complex design of human vessels, flushing away the ink to leave behind open lumens. The channel remains open, mimicking a blood vessel network that could have fluid actively, continuously flowing through it. “Where we’re going is to expand this not only to different tissue types, but also building in mechanisms by which we can build multi-scale vasculature,” said Lewis.

Honoring Mildred S. Dresselhaus

In closing, Lewis reflected on Dresselhaus’ positive impact on her own career. “I want to dedicate this [talk] to Millie Dresselhaus,” said Lewis. She pointed to a quote by Millie: “The best thing about having a lady professor on campus is that it tells women students that they can do it, too.” Lewis, who arrived at MIT as a materials science and engineering graduate student in the late 1980s, a time when there were very few women with engineering doctorates, noted that “just seeing someone of her stature was really an inspiration for me. I thank her very much for all that she’s done, for her amazing inspiration both as a student, as a faculty member, and even now, today.”

After the lecture, Lewis was joined by Ritu Raman, the Eugene Bell Career Development Assistant Professor of Tissue Engineering in the MIT Department of Mechanical Engineering, for a question-and-answer session. Their discussion included ideas on 3D printing hardware and software, tissue repair and regeneration, and bioprinting in space. 

“Both Mildred Dresselhaus and Jennifer Lewis have made incredible contributions to science and served as inspiring role models to many in the MIT community and beyond, including myself,” said Raman. “In my own career as a tissue engineer, the tools and techniques developed by Professor Lewis and her team have critically informed and enabled the research my lab is pursuing.”

This was the seventh Dresselhaus Lecture, named in honor of the late MIT Institute Professor Mildred Dresselhaus, known to many as the "Queen of Carbon Science.” The annual event honors a significant figure in science and engineering from anywhere in the world whose leadership and impact echo Dresselhaus’ life, accomplishments, and values. 

“Professor Lewis exemplifies, in so many ways, the spirit of Millie Dresselhaus,” said MIT.nano Director Vladimir Bulović. “Millie’s groundbreaking work, indeed, is well known; and the groundbreaking work of Professor Lewis in 3D printing and bio-inspired materials continues that legacy.”

MIT’s Science Policy Initiative holds 15th annual Executive Visit Days

MIT Latest News - Tue, 12/09/2025 - 5:00pm

"To really understand science policy, you have to step outside the lab and see it in action," says Jack Fletcher, an MIT PhD student in nuclear science and engineering and chair of the 15th annual Executive Visit Days (ExVD). 

Inspired by this mindset, ExVD — jointly organized by the MIT Science Policy Initiative (SPI) and the MIT Washington Office — convened a delegation of 21 MIT affiliates, including undergraduates, graduate students, and postdocs, in Washington Oct. 27-28. 

Although the government shutdown prevented the delegation’s usual visits to executive agencies, participants met with experts across the federal science and technology policy ecosystem. These discussions built connections in the nation’s capital, displayed how evidence interacts with political realities, and demonstrated how scientists, engineers, and business leaders can pursue impactful careers in public service. 

A recurring theme across meetings was that political realities and institutional constraints, not just evidence and analysis, shape policy outcomes. As Mykyta Kliapets, a PhD student at KU Leuven (Belgium) and a visiting student at the MIT Kavli Institute for Astrophysics and Space Research, reflected, “It was really helpful to hear how rarely straightforward policy environments are — sometimes, a solution that makes the most sense technically is not always politically feasible.” 

The group also heard how political forces directly impact science, from disruptions during government shutdowns to recent reductions in federal research support. Speakers underscored that effective science policy requires combined fluency in evidence, systems, and incentives.

For the first time, ExVD visited the Delegation of the European Union to the United States to meet with Francesco Maria Graziani, climate and energy counselor. He described E.U.-U.S. cooperation on energy and climate as “active and vital, but complex,” noting that the E.U. can struggle to navigate a diverse, multilevel, and variable U.S. policy landscape. “The E.U. and the U.S. share many goals, but we often operate on different timelines and with different tools,” said Graziani. He identified nuclear power, geothermal energy, and supply chain security as areas of continued E.U. and U.S. collaboration. 

Graziani also discussed ongoing collaborations like the Destination Earth project, which improves global climate models using U.S. state-level data. “As a European, hearing differences in how the U.S. navigates science policy gave me a new lens on how two advanced democracies balance innovation, regulation, and the urgency of scientific challenges,” said Sofia Karagianni, an MBA student at the MIT Sloan School of Management

The ExVD delegation also met with three MIT alumni at the Science and Technology Policy Institute (STPI). A federally funded research and development center, STPI provides technical and analytical support on science and technology issues to inform policy decisions by the White House Office of Science and Technology Policy (OSTP) and other federal sponsors. Recently, STPI’s research reports have focused on a number of topics including quantum computing, biotechnology, and artificial intelligence. The discussion at STPI emphasized the importance of conducting  objective analyses that have relevance for policymakers. Director Asha Balakrishnan explained how it is often useful to provide “options” in their reports, rather than “recommendations,” because policymakers benefit from understanding the advantages and disadvantages of potential policy actions.

Participants found the speakers’ reflections on career development and fellowships particularly valuable. Several speakers discussed their experiences with the AAAS Science and Technology Policy Fellowship, which places scientists and engineers in federal agencies and congressional offices for a year. 

“In speaking with former fellows, I learned just how transformative these fellowships can be for scientists seeking to apply their academic research backgrounds to a wide range of careers at the intersection of science and policy,” said Amanda Hornick, a recent doctoral graduate of the Harvard-MIT Program in Health Sciences and Technology. Eli Duggan, a graduate student in MIT's Technology and Policy Program, added that “seeing how the speakers’ work makes a real impact got me excited to apply my technical and policy background for the public good.”

The lessons from these conversations reflect the broader mission of the MIT Science Policy Initiative: to help the MIT community understand and engage with the policymaking process. SPI is a student- and postdoc-led organization dedicated to strengthening dialogue between MIT and the broader policy ecosystem. Each year, SPI organizes multiple trips to Washington, giving members the chance to meet directly with federal agencies and policymakers while exploring careers at the intersection of science, technology, and policy. These trips also spark connections and conversations that participants bring back to campus, enriching policy dialogue within the MIT community. 

SPI is grateful to the individuals and organizations who shared their time and insights at this year’s ExVD, giving participants a foundation to draw on as they explore career opportunities and the many ways technical expertise can shape public decision-making.

Resurrecting an MIT “learning by doing” tradition: NEET scholars install solar-powered charging station

MIT Latest News - Tue, 12/09/2025 - 4:50pm

Students enrolled in MIT’s New Engineering Education Transformation (NEET) program recently collaborated across academic disciplines to design and construct a solar-powered charging station. Positioned in a quiet campus courtyard, the station provides the MIT community with climate-friendly power for phones, laptops, and tablets.

Its installation marked the “first time a cross-departmental team of undergraduates designed, created, and installed on campus a green technology artifact for the public good, as part of a class they took for credit,” says Amitava “Babi” Mitra, NEET founding executive director.

The project was very on-brand for the NEET program, which centers interdisciplinary, cross-departmental, and project-centric scholarship with experiential learning at its core. Launched in 2017 as an effort to reimagine undergraduate engineering education at MIT, NEET seeks to empower students to tackle complex societal challenges that straddle disciplines.

The solar-powered charging station project class is an integral part of NEET’s decarbonization-focused Climate and Sustainability Systems (CSS) “thread,” one of four pathways of study offered by the program. The class, 22.03/3.0061 (Introduction to Design Thinking and Rapid Prototyping), teaches the design and fabrication techniques used to create the station, such as laser cutting, 3D printing, computer-aided design (CAD), electronics prototyping, microcontroller programming, and composites manufacturing.

The project team included students majoring in chemical engineering, materials science and engineering, mechanical engineering, and nuclear science and engineering.

“What I really liked about this project was, at the beginning, it was really about ideation, about design, about brainstorming in ways that I haven’t seen before,” says NEET CSS student Aaron De Leon, a nuclear science and engineering major focused on clean energy development. 

During these brainstorming sessions, the team considered how their subjective design choices for the charging station would shape user experience, something De Leon, who enrolled in the class as a sophomore, says is often overlooked in engineering classes.

The team’s forest-inspired station design — complete with “tree trunks,” oyster mushroom-shaped desk space, and four solar panels curved to mimic the undulation of the forest canopy — was intended to evoke a sense of organic connectivity. The tree trunks were crafted from novel flax fiber-based composite layups the team developed through experiments designed to identify more sustainable alternatives to traditional composites.

The group also discussed how a dearth of device charging options made it difficult for students to work outside, according to NEET CSS student Celestina Pint, who enrolled in the class as a sophomore. The desk space was added to help MIT students work comfortably outdoors while also charging their devices with renewable energy.

Pint joined NEET because she wanted to “keep an open approach to climate and sustainability,” as opposed to relying on her materials science and engineering major alone, she says. “I like the interdisciplinary aspect.”

The project class presented abundant interdisciplinary learning opportunities that couldn’t be replicated in a purely theory-based curriculum, says Nathan Melenbrink, NEET lecturer, who teaches the project class and is the lead instructor for the NEET CSS thread.

For example, the team got a crash course in navigating real-world bureaucracy when they discovered that the installation of their charging station had to be approved by more than a dozen entities, including campus police, MIT’s insurance provider, and the campus facilities department.

The team also gained valuable experience with troubleshooting unanticipated design implementation challenges during the project’s fabrication phase.

“Adjustments had to be made,” Pint says. Once the station was installed, “it was interesting to see what was the same and what was different” from the team’s initial design.

This underscores a unique value of the project, according to NEET CSS student Tyler Ea, a fifth-year mechanical engineering major who joined the project team last year and is now a teaching assistant for the class.

Students “are able to take ownership of something physical, like a physical embodiment of their ideas, and something that they can point towards and say, ‘here’s something that I thought about, and this is how I went about building it, and then here’s the final result,’” he says.

While students only become eligible to join NEET in their second year, first-year students interested in the program were also able to learn from the solar-powered charging station project in the first-year discovery class SP.248 (The NEET Experience). After learning fundamental concepts in systems engineering, the class analyzed the station and suggested changes they thought would improve its design.

Melenbrink says student-built campus installations were once a hallmark of MIT’s academic culture, and he sees the NEET CSS solar-powered charging station project as an opportunity to help revive this tradition.

“What I hear from the old guard is that there was always somebody … lugging some giant, odd-looking prototype of something across campus,” Melenbrink says.

More collaborative, hands-on, student-led climate projects would also help the Institute meet its commitment to become a leading source of meaningful climate solutions, according to Elsa Olivetti, the Jerry McAfee (1940) Professor of Materials Science and Engineering and strategic advisor to the MIT Climate and Sustainability Consortium (MCSC).

“This local renewable energy project demonstrates that our campus community can learn through solution development,” she says. “Students don’t have to wait until they graduate or enter the job market to make a contribution.”

Students enrolled in this year’s Introduction to Design Thinking and Rapid Prototyping class will fabricate and install a new solar-powered charging station with a unique design. De Leon says he appreciates the latitude NEET students have to make the project their own.

“There was never the case of a professor saying, ‘We need to do it this way,’” he says. “I really liked that ability to learn as many things as you wanted to, and also have the autonomy to make your own design decisions along the way.”

Too sick to socialize: How the brain and immune system promote staying in bed

MIT Latest News - Tue, 12/09/2025 - 4:30pm

“I just can’t make it tonight. You have fun without me.” Across much of the animal kingdom, when infection strikes, social contact shuts down. A new study details how the immune and central nervous systems implement this sickness behavior.

It makes perfect sense that when we’re battling an infection, we lose our desire to be around others. That protects others from getting sick and lets us get much-needed rest. What hasn’t been as clear is how this behavior change happens.

In new research published Nov. 25 in Cell, scientists at MIT’s Picower Institute for Learning and Memory and collaborators used multiple methods to demonstrate causally that when the immune system cytokine interleukin-1 beta (IL-1β) reaches the IL-1 receptor 1 (IL-1R1) on neurons in a brain region called the dorsal raphe nucleus, that activates connections with the intermediate lateral septum to shut down social behavior.

“Our findings show that social isolation following immune challenge is self-imposed and driven by an active neural process, rather than a secondary consequence of physiological symptoms of sickness, such as lethargy,” says study co-senior author Gloria Choi, associate professor in MIT’s Department of Brain and Cognitive Sciences and a member of the Picower Institute.

Jun Huh, Harvard Medical School associate professor of immunology, is the paper’s co-senior author. The lead author is Liu Yang, a research scientist in Choi’s lab.

A molecule and its receptor

Choi and Huh’s long collaboration has identified other cytokines that affect social behavior by latching on to their receptors in the brain, so in this study their team hypothesized that the same kind of dynamic might cause social withdrawal during infection. But which cytokine? And what brain circuits might be affected?

To get started, Yang and her colleagues injected 21 different cytokines into the brains of mice, one by one, to see if any triggered social withdrawal the same way that giving mice LPS (a standard way of simulating infection) did. Only IL-1β injection fully recapitulated the same social withdrawal behavior as LPS. That said, IL-1β also made the mice more sluggish.

IL-1β affects cells when it hooks up with the IL-1R1, so the team next went looking across the brain for where the receptor is expressed. They identified several regions and examined individual neurons in each. The dorsal raphe nucleus (DRN) stood out among regions, both because it is known to modulate social behavior and because it is situated next to the cerebral aqueduct, which would give it plenty of exposure to incoming cytokines in cerebrospinal fluid. The experiments identified populations of DRN neurons that express IL-1R1, including many involved in making the crucial neuromodulatory chemical serotonin.

From there, Yang and the team demonstrated that IL-1β activates those neurons, and that activating the neurons promotes social withdrawal. Moreover, they showed that inhibiting that neural activity prevented social withdrawal in mice treated with IL-1β, and they showed that shutting down the IL-1R1 in the DRN neurons also prevented social withdrawal behavior after IL-1β injection or LPS exposure. Notably, these experiments did not change the lethargy that followed IL-1β or LPS, helping to demonstrate that social withdrawal and lethargy occur through different means.

“Our findings implicate IL-1β as a primary effector driving social withdrawal during systemic immune activation,” the researchers wrote in Cell.

Tracing the circuit

With the DRN identified as the site where neurons receiving IL-1β drove social withdrawal, the next question was what circuit they effected that behavior change through. The team traced where the neurons make their circuit projections and found several regions that have a known role in social behavior. Using optogenetics, a technology that engineers cells to become controllable with flashes of light, the scientists were able to activate the DRN neurons’ connections with each downstream region. Only activating the DRN’s connections with the intermediate lateral septum caused the social withdrawal behaviors seen with IL-1β injection or LPS exposure.

In a final test, they replicated their results by exposing some mice to salmonella.

“Collectively, these results reveal a role for IL-1R1-expressing DRN neurons in mediating social withdrawal in response to IL-1β during systemic immune challenge,” the researchers wrote.

Although the study revealed the cytokine, neurons, and circuit responsible for social withdrawal in mice in detail and with demonstrations of causality, the results still inspire new questions. One is whether IL-1R1 neurons affect other sickness behaviors. Another is whether serotonin has a role in social withdrawal or other sickness behaviors.

In addition to Yang, Choi, and Huh, the paper’s other authors are Matias Andina, Mario Witkowski, Hunter King, and Ian Wickersham.

Funding for the research came from the National Institute of Mental Health, the National Research Foundation of Korea, the Denis A. and Eugene W. Chinery Fund for Neurodevelopmental Research, the Jeongho Kim Neurodevelopmental Research Fund, Perry Ha, the Simons Center for the Social Brain, the Simons Foundation Autism Research Initiative, The Picower Institute for Learning and Memory, and The Freedom Together Foundation.

EFF Benefit Poker Tournament at DEF CON 33

EFF: Updates - Tue, 12/09/2025 - 1:46pm

In the brand new Planet Hollywood Poker Room, 48 digital rights supporters played No-Limit Texas Hold’Em in the 4th Annual EFF Benefit Poker Tournament at DEF CON, raising $18,395 for EFF.

img_5930.jpg

The tournament was hosted by EFF board member Tarah Wheeler and emceed by lintile, lending his Hacker Jeopardy hosting skills to help EFF for the day.

img_5980_copy.jpg

Every table had two celebrity players with special bounties for the player that knocked them out of the tournament. This year featured Wendy Nather, Chris “WeldPond” Wysopal, Jake “MalwareJake” Williams, Bryson Bort, Kym “KymPossible” Price, Adam Shostack, and Dr. Allan Friedman.

Excellent poker player and teacher Jason Healey, Professor of International Affairs at Columbia University’s School of International and Public Affairs noted that “the EFF poker tournament is where you find all the hacker royalty in one room."

img_5955-fs8-web.jpg

The day started at with a poker clinic run by Tarah’s father, professional poker player Mike Wheeler. The hour-long clinic helped folks get brushed up on their casino literacy before playing the big game.

Mike told the story of first teaching Tarah to play poker with jellybeans when she was only four. He then taught poker noobs how to play and when to check, when to fold, and when to go all-in.

img_5978.jpg

After the clinic, lintile roused the crowd to play for real, starting the tournament off by announcing “Shuffle up and deal!”

The first hour saw few players get knocked out, but after the blinds began to rise, the field began to thin, with a number of celebrity knock outs.
At every knockout, lintile took to the mic to encourage the player to donate to EFF, which allowed them to buy back into the tournament and try their luck another round.

kym.jpg

Jay Salzberg knocked out Kym Price to win a l33t crate.

img_6019.jpg
img_5923.jpg

Kim Holt knocked out Mike Wheeler, collecting the bounty on his head posted by Tarah, and winning a $250 donation to EFF in his name. This is the second time Holt has sent Mike home.

mike_knock_out.jpg

Tarah knocked out Adam Shostack, winning a number of fun prizes, including a signed copy of his latest book, Threats: What Every Engineer Should Learn From Star Wars.

adam.jpg

Bryson Bort was knocked out by privacy attorney Marcia Hofmann.

img_6082-web.jpg

Play continued for three hours until only the final table of players remained: Allaen Friedman, Luke Hanley, Jason Healey, Kim Holt, Igor Ignatov, Sid, Puneet Thapliyal, Charles Thomas and Tarah Wheeler herself.

As blinds continues to rise, players went all-in more and more. The most exciting moment was won by Sid, tripling up with TT over QT and A8s, and then only a few hands later knocking out Tarah, who finished 8th.

For the first time, the Jellybean Trophy sat on the final table awaiting the winner. This year, it was a Seattle Space Needle filled with green and blue jellybeans celebrating the lovely Pacific Northwest where Tarah and Mike are from.

The final three players were Allen Friedman, Kim Holt and Syd. Sid doubled up with KJ over Holt’s A6, and then knocked Holt out with his Q4 beating Holt’s 22.

Friedman and Sid traded blinds until Allan went all in with A6 and Syd called with JT. A jack landed on the flop and Syd won the day!

img_5987.jpg

img_6115.jpg

img_6126.jpg

Sid becomes the first player to win the tournament more than once, taking home the jellybean trophy two years in a row.

img_6139.jpg

It was an exciting afternoon of competition raising over $18,000 to support civil liberties and human rights online. We hope you join us next year as we continue to grow the tournament. Follow Tarah and EFF to make sure we have chips and a chair for you at DEF CON 34.

Be ready for this next year’s special benefit poker event: The Digital Rights Attack Lawyers Edition! Our special celebrity guests will all be our favorite digital rights attorneys including Cindy Cohn, Marcia Hofmann, Kurt Opsahl, and more!

Photo Gallery

Pompeii offers insights into ancient Roman building technology

MIT Latest News - Tue, 12/09/2025 - 11:00am

Concrete was the foundation of the ancient Roman empire. It enabled Rome’s storied architectural revolution as well as the construction of buildings, bridges, and aqueducts, many of which are still used some 2,000 years after their creation.

In 2023, MIT Associate Professor Admir Masic and his collaborators published a paper describing the manufacturing process that gave Roman concrete its longevity: Lime fragments were mixed with volcanic ash and other dry ingredients before the addition of water. Once water is added to this dry mix, heat is produced. As the concrete sets, this “hot-mixing” process traps and preserves the highly reactive lime as small, white, gravel-like features. When cracks form in the concrete, the lime clasts redissolve and fill the cracks, giving the concrete self-healing properties.

There was only one problem: The process Masic’s team described was different from the one described by the famed ancient Roman architect Vitruvius. Vitruvius literally wrote the book on ancient architecture. His highly influential work, “De architectura,” written in the 1st century B.C.E., is the first known book on architectural theory. In it, Vitruvius says that Romans added water to lime to create a paste-like material before mixing it with other ingredients.

“Having a lot of respect for Vitruvius, it was difficult to suggest that his description may be inaccurate,” Masic says. “The writings of Vitruvius played a critical role in stimulating my interest in ancient Roman architecture, and the results from my research contradicted these important historical texts.”

Now, Masic and his collaborators have confirmed that hot-mixing was indeed used by the Romans, a conclusion he reached by studying a newly discovered ancient construction site in Pompeii that was exquisitely preserved by the volcanic eruption of Mount Vesuvius in the year 79 C.E. They also characterized the volcanic ash material the Romans mixed with the lime, finding a surprisingly diverse array of reactive minerals that further added to the concrete’s ability to repair itself many years after these monumental structures were built.

“There is the historic importance of this material, and then there is the scientific and technological importance of understanding it,” Masic explains. “This material can heal itself over thousands of years, it is reactive, and it is highly dynamic. It has survived earthquakes and volcanoes. It has endured under the sea and survived degradation from the elements. We don’t want to completely copy Roman concrete today. We just want to translate a few sentences from this book of knowledge into our modern construction practices.”

The findings are described today in Nature Communications. Joining Masic on the paper are first authors Ellie Vaserman ’25 and Principal Research Scientist James Weaver, along with Associate Professor Kristin Bergmann, PhD candidate Claire Hayhow, and six other Italian collaborators.

Uncovering ancient secrets

Masic has spent close to a decade studying the chemical composition of the concrete that allowed Rome’s famous structures to endure for so much longer than their modern counterparts. His 2023 paper analyzed the material’s chemical composition to deduce how it was made.

That paper used samples from a city wall in Priverno in southwest Italy, which was conquered by the Romans in the 4th century B.C.E. But there was a question as to whether this wall was representative of other concrete structures built throughout the Roman empire.

The recent discovery by archaeologists of an active ancient construction site in Pompeii (complete with raw material piles and tools) therefore offered an unprecedented opportunity.

For the study, the researchers analyzed samples from these pre-mixed dry material piles, a wall that was in the process of being built, completed buttress and structural walls, and mortar repairs in an existing wall.

“We were blessed to be able to open this time capsule of a construction site and find piles of material ready to be used for the wall,” Masic says. “With this paper, we wanted to clearly define a technology and associate it with the Roman period in the year 79 C.E.”

The site offered the clearest evidence yet that the Romans used hot-mixing in concrete production. Not only did the concrete samples contain the lime clasts described in Masic’s previous paper, but the team also discovered intact quicklime fragments pre-mixed with other ingredients in a dry raw material pile, a critical first step in the preparation of hot-mixed concrete.

Bergman, an associate professor of earth and planetary sciences, helped develop tools for differentiating the materials at the site.

“Through these stable isotope studies, we could follow these critical carbonation reactions over time, allowing us to distinguish hot-mixed lime from the slaked lime originally described by Vitruvius,” Masic says. “These results revealed that the Romans prepared their binding material by taking calcined limestone (quicklime), grinding them to a certain size, mixing it dry with volcanic ash, and then eventually adding water to create a cementing matrix.”

The researchers also analyzed the volcanic ingredients in the cement, including a type of volcanic ash called pumice. They found that the pumice particles chemically reacted with the surrounding pore solution over time, creating new mineral deposits that further strengthened the concrete.

Rewriting history

Masic says the archaeologists listed as co-authors on the paper were indispensable to the study. When Masic first entered the Pompeii site, as he inspected the perfectly preserved work area, tears came to his eyes.

“I expected to see Roman workers walking between the piles with their tools,” Masic says. “It was so vivid, you felt like you were transported in time. So yes, I got emotional looking at a pile of dirt. The archaeologists made some jokes.”

Masic notes that calcium is a key component in both ancient and modern concretes, so understanding how it reacts over time holds lessons for understanding dynamic processes in modern cement as well. Towards these efforts, Masic has also started a company, DMAT, that uses lessons from ancient Roman concrete to create long-lasting modern concretes.

“This is relevant because Roman cement is durable, it heals itself, and it’s a dynamic system,” Masic says. “The way these pores in volcanic ingredients can be filled through recrystallization is a dream process we want to translate into our modern materials. We want materials that regenerate themselves.”

As for Vitruvius, Masic guesses that he may have been misinterpreted. He points out that Vitruvius also mentions latent heat during the cement mixing process, which could suggest hot-mixing after all.

The work was supported, in part, by the MIT Research Support Commmittee (RSC) and the MIT Concrete Sustainability Hub.

AI vs. Human Drivers

Schneier on Security - Tue, 12/09/2025 - 7:07am

Two competing arguments are making the rounds. The first is by a neurosurgeon in the New York Times. In an op-ed that honestly sounds like it was paid for by Waymo, the author calls driverless cars a “public health breakthrough”:

In medical research, there’s a practice of ending a study early when the results are too striking to ignore. We stop when there is unexpected harm. We also stop for overwhelming benefit, when a treatment is working so well that it would be unethical to continue giving anyone a placebo. When an intervention works this clearly, you change what you do...

Judge orders DOE to release records on climate working group

ClimateWire News - Tue, 12/09/2025 - 6:19am
The administration said it will no longer fight a legal claim that DOE broke transparency laws to support repeal of the endangerment finding.

EPA erases references to human-caused climate change from websites

ClimateWire News - Tue, 12/09/2025 - 6:18am
The agency revamped its webpages to feature natural causes of rising temperatures such as the Earth’s orbit.

Judge nixes Trump’s freeze on wind approvals

ClimateWire News - Tue, 12/09/2025 - 6:16am
The decision called the president's order unlawful, as the administration failed to explain why it halted onshore and offshore wind authorizations.

Congestion pricing is working in New York City — study

ClimateWire News - Tue, 12/09/2025 - 6:16am
Traffic and air pollution both have decreased, new research shows.

Miami prepares to pick next mayor, with climate resilience on the line

ClimateWire News - Tue, 12/09/2025 - 6:15am
Both candidates have criticized a multimillion-dollar effort to protect the city from flooding.

Committee approves NASA, transportation nominees

ClimateWire News - Tue, 12/09/2025 - 6:15am
The Commerce, Science and Transportation Committee also approved President Donald Trump's Coast Guard pick.

UN calls for economic changes to reverse environmental damage

ClimateWire News - Tue, 12/09/2025 - 6:13am
Repurposing fossil fuel subsidies and pricing carbon pollution are among the steps called for in the major report.

‘Let It Beet.’ Paul McCartney joins EU ‘veggie burger’ fight.

ClimateWire News - Tue, 12/09/2025 - 6:12am
An EU proposal would prohibit the use of labels such as “veggie burger” or “vegan sausage” for plant-based and lab-grown dishes.

Pages