Feed aggregator
Trump budget would continue uneven support of highway disaster fund
California regulators will probe State Farm’s handling of LA fire claims
California high-speed rail CEO slams Trump’s plan to terminate grants
Why the EU is about to cripple its next climate target
The battle for the soul of Britain’s Green Party
Navigating the black box of fair national emissions targets
Nature Climate Change, Published online: 16 June 2025; doi:10.1038/s41558-025-02361-7
Fair climate targets aligned with the Paris Agreement can be calculated in multiple ways, yielding diverse outcomes. Researchers unpack how equity, global strategies and political and social uncertainties shape fair share allocations, using them to assess nationally determined contributions and guide global climate finance.Startup’s biosensor makes drug development and manufacturing cheaper
In the biotech and pharmaceutical industries, ELISA tests provide critical quality control during drug development and manufacturing. The tests can precisely quantify protein levels, but they also require hours of work by trained technicians and specialized equipment. That makes them prohibitively expensive, driving up the costs of drugs and putting research testing out of reach for many.
Now the Advanced Silicon Group (ASG), founded by Marcie Black ’94, MEng ’95, PhD ’03 and Bill Rever, is commercializing a new technology that could dramatically lower the time and costs associated with protein sensing. ASG’s proprietary sensor combines silicon nanowires with antibodies that can bind to different proteins to create a highly sensitive measurement of their concentration in a given solution.
The tests can measure the concentration of many different proteins and other molecules at once, with results typically available in less than 15 minutes. Users simply place a tiny amount of solution on the sensor, rinse the sensor, and then insert it into ASG’s handheld testing system.
“We’re making it 15 times faster and 15 times lower cost to test for proteins,” Black says. “That’s on the drug development side. This could also make the manufacturing of drugs significantly faster and more cost-effective. It could revolutionize how we create drugs in this country and around the world.”
Since developing its sensor, ASG’s team has received inquiries from a long list of people interested in using them to develop new therapeutics, help elite athletes train, and understand soil concentrations in agriculture, among other applications.
For now, though, the small company is focusing on lowering barriers in health care by selling its low-cost sensors to companies developing and manufacturing drugs.
“Right now, money is a limiting factor in researching and creating new drugs,” explains Marissa Gillis, a member of ASG’s team. “Making these processes faster and less costly could dramatically increase the amount of biologic testing and creation. It also makes it more viable for companies to develop drugs for rare conditions with smaller markets.”
A family away from home
Black grew up in a small town in Ohio before coming to MIT for three degrees in electrical engineering.
“Going to MIT changed my life,” Black says. “It opened my eyes to the possibilities of doing science and engineering to make the world a better place. Also, just being around so many amazing people taught me how to dream big.”
For her PhD, Black worked with the late Institute Professor Mildred Dresselhaus, a highly acclaimed physicist and nanotechnology pioneer who Black remembers for her mentorship and compassion as much as her contributions to our understanding of exotic materials. Black couldn’t always afford to go home for holidays, so she’d spend Thanksgivings with the Dresselhaus family.
“Millie was an amazing person, and her family was a family away from home for me,” Black says. “Millie continued to be my mentor — and I hear she did this with a lot of students — until the day she died.”
For her thesis, Black studied the optical properties of nanowires, which taught her about the nanostructures and optoelectronics she’d eventually use as part of the Advanced Silicon Group.
Following graduation, Black worked at the Los Alamos National Laboratory before founding the company Bandgap Engineering, which developed efficient, low-cost nanostructured solar cells. That technology was subsequently commercialized by other companies and became the subject of a patent dispute. In 2015, Black spun out the Advanced Silicon Group to apply a similar technology to protein sensing.
ASG’s sensors combine known approaches for sensitizing silicon to biological molecules, using the photoelectric properties of silicon nanowires to detect proteins electrically.
“It’s basically a solar cell that we functionalize with an antibody that’s specific to a certain protein,” Black says. “When the protein gets close, it brings an electrical charge with it that will repel light carriers inside the silicon, and doing that changes how well the electron and the holes can recombine. By looking at the photocurrent when you’re exposed to a solution, you can tell how much protein is bound to the surface and thus the concentration of that protein.”
ASG was accepted into MIT.nano’s START.nano startup accelerator and MIT’s Office of Corporate Relations Startup Exchange Program soon after its founding, which gave Black’s team access to cutting-edge equipment at MIT and connected her with potential investors and partners.
Black has also received broad support from MIT’s Venture Mentoring Service and worked with researchers from MIT’s Microsystems Technology Laboratories (MTL), where she conducted research as a student.
“Even though the company is in Lowell, [Massachusetts], I’m constantly going to MIT and getting help from professors and researchers at MIT,” Black says.
Biosensing for impact
From extensive discussions with people in the pharmaceutical industry, Black learned about the need for a more affordable protein-measurement tool. During drug development and manufacturing, protein levels must be measured to detect problems such as contamination from host cell proteins, which can be fatal to patients even at very low quantities.
“It can cost more than $1 billion to develop a drug,” Black says. “A big part of the process is bioprocessing, and 50 to 80 percent of bioprocessing is dedicated to purifying these unwanted proteins. That challenge leads to drugs being more expensive and taking longer to get to market.”
ASG has since worked with researchers to develop tests for biomarkers associated with lung cancer and dormant tuberculosis and has received multiple grants from the National Science Foundation, the National Institute of Standards and Technology, and the commonwealth of Massachusetts, including funding to develop tests for host cell proteins.
This year, ASG announced a partnership with Axogen to help the regenerative nerve repair company grow nerve tissue.
“There’s a lot of interest in using our sensor for applications in regenerative medicine,” Black says. “Another example we envision is if you’re sick in rural India and there’s no doctor nearby, you can show up at a clinic, nurses can give this to you and test for the flu, Covid-19, food poisoning, pregnancy, and 10 other things all at once. The results come in 15 minutes, then you could get what you need or teleconference a doctor.”
ASG is currently able to produce about 2,000 of its sensors on 8-inch chips per production line in its partner’s semiconductor foundry. As the company continues scaling up production, Black is hopeful the sensors will lower costs at every step between drug developers and patients.
“We really want to lower the barriers for testing so that everyone has access to good health care,” Black says. “Beyond that, there are so many applications for protein sensing. It’s really where the rubber hits the road in biology, agriculture, diagnostics. We’re excited to partner with leaders in every one of these industries.”
Upcoming Speaking Engagements
This is a current list of where and when I am scheduled to speak:
- I’m speaking at the International Conference on Digital Trust, AI and the Future in Edinburgh, Scotland on Tuesday, June 24 at 4:00 PM.
The list is maintained on this page.
Friday Squid Blogging: Stubby Squid
Video of the stubby squid (Rossia pacifica) from offshore Vancouver Island.
As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.
First-of-its-kind device profiles newborns’ immune function
After more than a decade of successes, ESI’s work will spread out across the Institute
MIT’s Environmental Solutions Initiative (ESI), a pioneering cross-disciplinary body that helped give a major boost to sustainability and solutions to climate change at MIT, will close as a separate entity at the end of June. But that’s far from the end for its wide-ranging work, which will go forward under different auspices. Many of its key functions will become part of MIT’s recently launched Climate Project. John Fernandez, head of ESI for nearly a decade, will return to the School of Architecture and Planning, where some of ESI’s important work will continue as part of a new interdisciplinary lab.
When the ideas that led to the founding of MIT’s Environmental Solutions Initiative first began to be discussed, its founders recall, there was already a great deal of work happening at MIT relating to climate change and sustainability. As Professor John Sterman of the MIT Sloan School of Management puts it, “there was a lot going on, but it wasn’t integrated. So the whole added up to less than the sum of its parts.”
ESI was founded in 2014 to help fill that coordinating role, and in the years since it has accomplished a wide range of significant milestones in research, education, and communication about sustainable solutions in a wide range of areas. Its founding director, Professor Susan Solomon, helmed it for its first year, and then handed the leadership to Fernandez, who has led it since 2015.
“There wasn’t much of an ecosystem [on sustainability] back then,” Solomon recalls. But with the help of ESI and some other entities, that ecosystem has blossomed. She says that Fernandez “has nurtured some incredible things under ESI,” including work on nature-based climate solutions, and also other areas such as sustainable mining, and reduction of plastics in the environment.
Desiree Plata, director of MIT’s Climate and Sustainability Consortium and associate professor of civil and environmental engineering, says that one key achievement of the initiative has been in “communication with the external world, to help take really complex systems and topics and put them in not just plain-speak, but something that’s scientifically rigorous and defensible, for the outside world to consume.”
In particular, ESI has created three very successful products, which continue under the auspices of the Climate Project. These include the popular TIL Climate Podcast, the Webby Award-winning Climate Portal website, and the online climate primer developed with Professor Kerry Emanuel. “These are some of the most frequented websites at MIT,” Plata says, and “the impact of this work on the global knowledge base cannot be overstated.”
Fernandez says that ESI has played a significant part in helping to catalyze what has become “a rich institutional landscape of work in sustainability and climate change” at MIT. He emphasizes three major areas where he feels the ESI has been able to have the most impact: engaging the MIT community, initiating and stewarding critical environmental research, and catalyzing efforts to promote sustainability as fundamental to the mission of a research university.
Engagement of the MIT community, he says, began with two programs: a research seed grant program and the creation of MIT’s undergraduate minor in environment and sustainability, launched in 2017.
ESI also created a Rapid Response Group, which gave students a chance to work on real-world projects with external partners, including government agencies, community groups, nongovernmental organizations, and businesses. In the process, they often learned why dealing with environmental challenges in the real world takes so much longer than they might have thought, he says, and that a challenge that “seemed fairly straightforward at the outset turned out to be more complex and nuanced than expected.”
The second major area, initiating and stewarding environmental research, grew into a set of six specific program areas: natural climate solutions, mining, cities and climate change, plastics and the environment, arts and climate, and climate justice.
These efforts included collaborations with a Nobel Peace Prize laureate, three successive presidential administrations from Colombia, and members of communities affected by climate change, including coal miners, indigenous groups, various cities, companies, the U.N., many agencies — and the popular musical group Coldplay, which has pledged to work toward climate neutrality for its performances. “It was the role that the ESI played as a host and steward of these research programs that may serve as a key element of our legacy,” Fernandez says.
The third broad area, he says, “is the idea that the ESI as an entity at MIT would catalyze this movement of a research university toward sustainability as a core priority.” While MIT was founded to be an academic partner to the industrialization of the world, “aren’t we in a different world now? The kind of massive infrastructure planning and investment and construction that needs to happen to decarbonize the energy system is maybe the largest industrialization effort ever undertaken. Even more than in the recent past, the set of priorities driving this have to do with sustainable development.”
Overall, Fernandez says, “we did everything we could to infuse the Institute in its teaching and research activities with the idea that the world is now in dire need of sustainable solutions.”
Fernandez “has nurtured some incredible things under ESI,” Solomon says. “It’s been a very strong and useful program, both for education and research.” But it is appropriate at this time to distribute its projects to other venues, she says. “We do now have a major thrust in the Climate Project, and you don’t want to have redundancies and overlaps between the two.”
Fernandez says “one of the missions of the Climate Project is really acting to coalesce and aggregate lots of work around MIT.” Now, with the Climate Project itself, along with the Climate Policy Center and the Center for Sustainability Science and Strategy, it makes more sense for ESI’s climate-related projects to be integrated into these new entities, and other projects that are less directly connected to climate to take their places in various appropriate departments or labs, he says.
“We did enough with ESI that we made it possible for these other centers to really flourish,” he says. “And in that sense, we played our role.”
As of June 1, Fernandez has returned to his role as professor of architecture and urbanism and building technology in the School of Architecture and Planning, where he directs the Urban Metabolism Group. He will also be starting up a new group called Environment ResearchAction (ERA) to continue ESI work in cities, nature, and artificial intelligence.