Feed aggregator

Lincoln Laboratory and Haystack Observatory team up to unveil hidden parts of the galaxy

MIT Latest News - Fri, 10/17/2025 - 2:50pm

For centuries, humans have sought to study the stars and celestial bodies, whether through observations made by naked eye or by telescopes on the ground and in space that can view the universe across nearly the entire electromagnetic spectrum. Each view unlocks new information about the denizens of space — X-ray pulsars, gamma-ray bursts — but one is still missing: the low-frequency radio sky.

Researchers from MIT Lincoln Laboratory, the MIT Haystack Observatory, and Lowell Observatory are working on a NASA-funded concept study called the Great Observatory for Long Wavelengths, or GO-LoW, that outlines a method to view the universe at as-of-yet unseen low frequencies using a constellation of thousands of small satellites. The wavelengths of these frequencies are 15 meters to several kilometers in length, which means they require a very big telescope in order to see clearly.

"GO-LoW will be a new kind of telescope, made up of many thousands of spacecraft that work together semi-autonomously, with limited input from Earth," says Mary Knapp, the principal investigator for GO-LoW at the MIT Haystack Observatory. "GO-LoW will allow humans to see the universe in a new light, opening up one of the very last frontiers in the electromagnetic spectrum."

The difficulty in viewing the low-frequency radio sky comes from Earth's ionosphere, a layer of the atmosphere that contains charged particles that prevent very low-frequency radio waves from passing through. Therefore, a space-based instrument is required to observe these wavelengths. Another challenge is that long-wavelength observations require correspondingly large telescopes, which would need to be many kilometers in length if built using traditional dish antenna designs. GO-LoW will use interferometry — a technique that combines signals from many spatially separated receivers that, when put together, will function as one large telescope — to obtain highly detailed data from exoplanets and other sources in space. A similar technique was used to make the first image of a black hole and, more recently, an image of the first known extrasolar radiation belts.

Melodie Kao, a member of the team from Lowell Observatory, says the data could reveal details about an exoplanet's makeup and potential for life. "[The radio wave aurora around an exoplanet] carries important information, such as whether or not the planet has a magnetic field, how strong it is, how fast the planet is rotating, and even hints about what's inside," she says. "Studying exoplanet radio aurorae and the magnetic fields that they trace is an important piece of the habitability puzzle, and it's a key science goal for GO-LoW."

Several recent trends and technology developments will make GO-LoW possible in the near future, such as the declining cost of mass-produced small satellites, the rise of mega-constellations, and the return of large, high-capacity launch vehicles like NASA's Space Launch System. Go-LoW would be the first mega-constellation that uses interferometry for scientific purposes.

The GO-LoW constellation will be built through several successive launches, each containing thousands of spacecraft. Once they reach low-Earth orbit, the spacecraft will be refueled before journeying on to their final destination — an Earth-sun Lagrange point where they will then be deployed. Lagrange points are regions in space where the gravitational forces of two large celestial bodies (like the sun and Earth) are in equilibrium, such that a spacecraft requires minimal fuel to maintain its position relative to the two larger bodies.  At this long distance from Earth (1 astronomical unit, or approximately 93 million miles), there will also be much less radio-frequency interference that would otherwise obscure GO-LoW’s sensitive measurements.

"GO-LoW will have a hierarchical architecture consisting of thousands of small listener nodes and a smaller number of larger communication and computation nodes (CCNs)," says Kat Kononov, a team member from Lincoln Laboratory's Applied Space Systems Group, who has been working with MIT Haystack staff since 2020, with Knapp serving as her mentor during graduate school. A node refers to an individual small satellite within the constellation. "The listener nodes are small, relatively simple 3U CubeSats — about the size of a loaf of bread — that collect data with their low-frequency antennas, store it in memory, and periodically send it to their communication and computation node via a radio link." In comparison, the CCNs are about the size of a mini-fridge.

The CCN will keep track of the positions of the listener nodes in their neighborhood; collect and reduce the data from their respective listener nodes (around 100 of them); and then transmit that data back to Earth, where more intensive data processing can be performed.

At full strength, with approximately 100,000 listener nodes, the GO-LoW constellation should be able to see exoplanets with magnetic fields in the solar neighborhood — within 5 to 10 parsecs — many for the very first time.

The GO-LoW research team recently published the results of their findings from Phase I of the study, which identified a type of advanced antenna called a vector sensor as the best type for this application. In 2024, Lincoln Laboratory designed a compact deployable version of the sensor suitable for use in space.

The team is now working on Phase II of the program, which is to build a multi-agent simulation of constellation operations.

"What we learned during the Phase I study is that the hard part for GO-LoW is not any specific technology … the hard part is the system: the system engineering and the autonomy to run the system," says Knapp. "So, how do we build this constellation such that it's a tractable problem? That's what we’re exploring in this next part of the study."

GO-LoW is one of many civil space programs at Lincoln Laboratory that aim to harness advanced technologies originally developed for national security to enable new space missions that support science and society. "By adapting these capabilities to serve new stakeholders, the laboratory helps open novel frontiers of discovery while building resilient, cost-effective systems that benefit the nation and the world," says Laura Kennedy, who is the deputy lead of Lincoln Laboratory's Civil Space Systems and Technology Office.

"Like landing on the moon in 1969, or launching Hubble in the 1990s, GO-LoW is envisioned to let us see something we've never seen before and generate scientific breakthroughs," says Kononov.

Go-LoW is a collaboration between Lincoln Laboratory, Haystack Observatory, and Lowell University, as well as Lenny Paritsky from LeafLabs and Jacob Turner from Cornell University.

New software designs eco-friendly clothing that can reassemble into new items

MIT Latest News - Fri, 10/17/2025 - 2:30pm

It’s hard to keep up with the ever-changing trends of the fashion world. What’s “in” one minute is often out of style the next season, potentially causing you to re-evaluate your wardrobe.

Staying current with the latest fashion styles can be wasteful and expensive, though. Roughly 92 million tons of textile waste are produced annually, including the clothes we discard when they go out of style or no longer fit. But what if we could simply reassemble our clothes into whatever outfits we wanted, adapting to trends and the ways our bodies change?

A team of researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Adobe are attempting to bring eco-friendly, versatile garments to life. Their new “Refashion” software system breaks down fashion design into modules — essentially, smaller building blocks — by allowing users to draw, plan, and visualize each element of a clothing item. The tool turns fashion ideas into a blueprint that outlines how to assemble each component into reconfigurable clothing, such as a pair of pants that can be transformed into a dress.

With Refashion, users simply draw shapes and place them together to develop an outline for adaptable fashion pieces. It’s a visual diagram that shows how to cut garments, providing a straightforward way to design things like a shirt with an attachable hood for rainy days. One could also create a skirt that can then be reconfigured into a dress for a formal dinner, or maternity wear that fits during different stages of pregnancy.

“We wanted to create garments that consider reuse from the start,” says Rebecca Lin, MIT Department of Electrical Engineering and Computer Science (EECS) PhD student, CSAIL and Media Lab researcher, and lead author on a paper presenting the project. “Most clothes you buy today are static, and are discarded when you no longer want them. Refashion instead makes the most of our garments by helping us design items that can be easily resized, repaired, or restyled into different outfits.”

Modules à la mode

The researchers conducted a preliminary user study where both designers and novices explored Refashion and were able to create garment prototypes. Participants assembled pieces such as an asymmetric top that could be extended into a jumpsuit, or remade into a formal dress, often within 30 minutes. These results suggest that Refashion has the potential to make prototyping garments more approachable and efficient. But what features might contribute to this ease of use?

Its interface first presents a simple grid in its “Pattern Editor” mode, where users can connect dots to outline the boundaries of a clothing item. It’s essentially drawing rectangular panels and specifying how different modules will connect to each other.

Users can customize the shape of each component, create a straight design for garments (which might be useful for less form-fitting items, like chinos) or perhaps tinkering with one of Refashion’s templates. A user can edit pre-designed blueprints for things like a T-shirt, fitted blouse, or trousers.

Another, more creative route is to change the design of individual modules. One can choose the “pleat” feature to fold a garment over itself, similar to an accordion, for starters. It’s a useful way to design something like a maxi dress. The “gather” option adds an artsy flourish, where a garment is crumpled together to create puffy skirts or sleeves. A user might even go with the “dart” module, which removes a triangular piece from the fabric. It allows for shaping a garment at the waist (perhaps for a pencil skirt) or tailor to the upper body (fitted shirts, for instance).

While it might seem that each of these components needs to be sewn together, Refashion enables users to connect garments through more flexible, efficient means. Edges can be seamed together via double-sided connectors such as metal snaps (like the buttons used to close a denim jacket) or Velcro dots. A user could also fasten them in pins called brads, which have a pointed side that they stick through a hole and split into two “legs” to attach to another surface; it’s a handy way to secure, say, a picture on a poster board. Both connective methods make it easy to reconfigure modules, should they be damaged or a “fit check” calls for a new look.

As a user designs their clothing piece, the system automatically creates a simplified diagram of how it can be assembled. The pattern is divided into numbered blocks, which is dragged onto different parts of a 2D mannequin to specify the position of each component. The user can then simulate how their sustainable clothing will look on 3D models of a range of body types (one can also upload a model).

Finally, a digital blueprint for sustainable clothing can extend, shorten, or combine with other pieces. Thanks to Refashion, a new piece could be emblematic of a potential shift in fashion: Instead of buying new clothes every time we want a new outfit, we can simply reconfigure existing ones. Yesterday’s scarf could be today’s hat, and today’s T-shirt could be tomorrow’s jacket.

“Rebecca’s work is at an exciting intersection between computation and art, craft, and design,” says MIT EECS professor and CSAIL principal investigator Erik Demaine, who advises Lin. “I’m excited to see how Refashion can make custom fashion design accessible to the wearer, while also making clothes more reusable and sustainable.”

Constant change

While Refashion presents a greener vision for the future of fashion, the researchers note that they’re actively improving the system. They intend to revise the interface to support more durable items, stepping beyond standard prototyping fabrics. Refashion may soon support other modules, like curved panels, as well. The CSAIL-Adobe team may also evaluate whether their system can use as few materials as possible to minimize waste, and whether it can help “remix” old store-bought outfits.

Lin also plans to develop new computational tools that help designers create unique, personalized outfits using colors and textures. She’s exploring how to design clothing by patchwork — essentially, cutting out small pieces from materials like decorative fabrics, recycled denim, and crochet blocks and assembling them into a larger item.

“This is a great example of how computer-aided design can also be key in supporting more sustainable practices in the fashion industry,” says Adrien Bousseau, a senior researcher at Inria Centre at Université Côte d'Azur who wasn’t involved in the paper. “By promoting garment alteration from the ground up, they developed a novel design interface and accompanying optimization algorithm that helps designers create garments that can undergo a longer lifetime through reconfiguration. While sustainability often imposes additional constraints on industrial production, I am confident that research like the one by Lin and her colleagues will empower designers in innovating despite these constraints.”

Lin wrote the paper with Adobe Research scientists Michal Lukáč and Mackenzie Leake, who is the paper’s senior author and a former CSAIL postdoc. Their work was supported, in part, by the MIT Morningside Academy for Design, an MIT MAKE Design-2-Making Mini-Grant, and the Natural Sciences and Engineering Research Council of Canada. The researchers presented their work recently at the ACM Symposium on User Interface Software and Technology.

A Surprising Amount of Satellite Traffic Is Unencrypted

Schneier on Security - Fri, 10/17/2025 - 7:03am

Here’s the summary:

We pointed a commercial-off-the-shelf satellite dish at the sky and carried out the most comprehensive public study to date of geostationary satellite communication. A shockingly large amount of sensitive traffic is being broadcast unencrypted, including critical infrastructure, internal corporate and government communications, private citizens’ voice calls and SMS, and consumer Internet traffic from in-flight wifi and mobile networks. This data can be passively observed by anyone with a few hundred dollars of consumer-grade hardware. There are thousands of geostationary satellite transponders globally, and data from a single transponder may be visible from an area as large as 40% of the surface of the earth...

Chinese EV sales are booming worldwide. Can the US catch up?

ClimateWire News - Fri, 10/17/2025 - 6:15am
"Never in a hundred years has the auto industry witnessed such explosive growth in exports from a single country,” one analyst said.

Why did State Farm hike rates in a state with no huge disasters?

ClimateWire News - Fri, 10/17/2025 - 6:14am
The insurer blames inflation and intense storms. Illinois officials say the company exploited lax regulations to raise prices 27 percent.

Trump says US won’t comply with carbon ship fee

ClimateWire News - Fri, 10/17/2025 - 6:12am
The president urged other countries to vote against a proposed worldwide fee on greenhouse gas emissions on the shipping industry on Friday.

Maryland offshore wind developer asks court to block Trump attacks

ClimateWire News - Fri, 10/17/2025 - 6:11am
The Trump administration has said it plans to revoke US Wind’s permit for the project, which aims to power more than 718,000 homes.

2 scientists use ‘last-ditch’ gamble to stop coal rule rollback

ClimateWire News - Fri, 10/17/2025 - 6:10am
The former government health specialists urged Health Secretary Robert F. Kennedy Jr. to “intercede” in EPA’s effort to weaken regulations that reduce mercury and arsenic.

What Trump’s victory taught Democrats about climate change

ClimateWire News - Fri, 10/17/2025 - 6:09am
Climate change is out. Energy affordability is in.

Greens urge New Hampshire Republicans to kill crypto bill

ClimateWire News - Fri, 10/17/2025 - 6:08am
State legislation would shield the crypto sector from regulations and establish a special judicial docket.

Bike sharing is key to decarbonizing the EU. Are the bloc’s cities ready?

ClimateWire News - Fri, 10/17/2025 - 6:08am
Funding gaps and infrastructure limits risk stalling cities’ ambitions when it comes to expanding bike services.

Colombia warms to fossil fuels as climate agenda fizzles

ClimateWire News - Fri, 10/17/2025 - 6:07am
During a recent event in Bogotá, five presidential candidates held up “YES” signs when asked if they would authorize fracking in Colombia.

Earth might see 57 more superhot days a year — but it could have been worse

ClimateWire News - Fri, 10/17/2025 - 6:06am
A new report found that without the efforts to curb emissions of heat-trapping gases that started 10 years ago with the Paris Agreement, Earth would instead be adding 114 superhot days a year by the end of the century.

In a surprising discovery, scientists find tiny loops in the genomes of dividing cells

MIT Latest News - Fri, 10/17/2025 - 5:00am

Before cells can divide, they first need to replicate all of their chromosomes, so that each of the daughter cells can receive a full set of genetic material. Until now, scientists had believed that as division occurs, the genome loses the distinctive 3D internal structure that it typically forms.

Once division is complete, it was thought, the genome gradually regains that complex, globular structure, which plays an essential role in controlling which genes are turned on in a given cell.

However, a new study from MIT shows that in fact, this picture is not fully accurate. Using a higher-resolution genome mapping technique, the research team discovered that small 3D loops connecting regulatory elements and genes persist in the genome during cell division, or mitosis.

“This study really helps to clarify how we should think about mitosis. In the past, mitosis was thought of as a blank slate, with no transcription and no structure related to gene activity. And we now know that that’s not quite the case,” says Anders Sejr Hansen, an associate professor of biological engineering at MIT. “What we see is that there’s always structure. It never goes away.”

The researchers also discovered that these regulatory loops appear to strengthen when chromosomes become more compact in preparation for cell division. This compaction brings genetic regulatory elements closer together and encourages them to stick together. This may help cells “remember” interactions present in one cell cycle and carry it to the next one.

“The findings help to bridge the structure of the genome to its function in managing how genes are turned on and off, which has been an outstanding challenge in the field for decades,” says Viraat Goel PhD ’25, the lead author of the study.

Hansen and Edward Banigan, a research scientist in MIT’s Institute for Medical Engineering and Science, are the senior authors of the paper, which appears today in Nature Structural and Molecular Biology. Leonid Mirny, a professor in MIT’s Institute for Medical Engineering and Science and the Department of Physics, and Gerd Blobel, a professor at the Perelman School of Medicine at the University of Pennsylvania, are also authors of the study.

A surprising finding

Over the past 20 years, scientists have discovered that inside the cell nucleus, DNA organizes itself into 3D loops. While many loops enable interactions between genes and regulatory regions that may be millions of base pairs away from each other, others are formed during cell division to compact chromosomes. Much of the mapping of these 3D structures has been done using a technique called Hi-C, originally developed by a team that included MIT researchers and was led by Job Dekker at the University of Massachusetts Chan Medical School. To perform Hi-C, researchers use enzymes to chop the genome into many small pieces and biochemically link pieces that are near each other in 3D space within the cell’s nucleus. They then determine the identities of the interacting pieces by sequencing them.

However, that technique doesn’t have high enough resolution to pick out all specific interactions between genes and regulatory elements such as enhancers. Enhancers are short sequences of DNA that can help to activate the transcription of a gene by binding to the gene’s promoter — the site where transcription begins.

In 2023, Hansen and others developed a new technique that allows them to analyze 3D genome structures with 100 to 1,000 times greater resolution than was previously possible. This technique, known as Region-Capture Micro-C (RC-MC), uses a different enzyme that cuts the genome into small fragments of similar size. It also focuses on a smaller segment of the genome, allowing for high-resolution 3-D mapping of a targeted genome region.

Using this technique, the researchers were able to identify a new kind of genome structure that hadn’t been seen before, which they called “microcompartments.” These are tiny highly connected loops that form when enhancers and promoters located near each other stick together.

In that paper, experiments revealed that these loops were not formed by the same mechanisms that form other genome structures, but the researchers were unable to determine exactly how they do form. In hopes of answering that question, the team set out to study cells as they undergo cell division. During mitosis, chromosomes become much more compact, so that they can be duplicated, sorted, and divvied up between two daughter cells. As this happens, larger genome structures called A/B compartments and topologically associating domains (TADs) disappear completely.

The researchers believed that the microcompartments they had discovered would also disappear during mitosis. By tracking cells through the entire cell division process, they hoped to learn how the microcompartments appear after mitosis is completed.

“During mitosis, it has been thought that almost all gene transcription is shut off. And before our paper, it was also thought that all 3D structure related to gene regulation was lost and replaced by compaction. It’s a complete reset every cell cycle,” Hansen says.

However, to their surprise, the researchers found that microcompartments could still be seen during mitosis, and in fact they become more prominent as the cell goes through cell division.

“We went into this study thinking, well, the one thing we know for sure is that there’s no regulatory structure in mitosis, and then we accidentally found structure in mitosis,” Hansen says.

Using their technique, the researchers also confirmed that larger structures such as A/B compartments and TADs do disappear during mitosis, as had been seen before.

“This study leverages the unprecedented genomic resolution of the RC-MC assay to reveal new and surprising aspects of mitotic chromatin organization, which we have overlooked in the past using traditional 3C-based assays. The authors reveal that, contrary to the well-described dramatic loss of TADs and compartmentalization during mitosis, fine-scale “microcompartments” — nested interactions between active regulatory elements — are maintained or even transiently strengthened,” says Effie Apostolou, an associate professor of molecular biology in medicine at Weill Cornell Medicine, who was not involved in the study.

A spike in transcription

The findings may offer an explanation for a spike in gene transcription that usually occurs near the end of mitosis, the researchers say. Since the 1960s, it had been thought that transcription ceased completely during mitosis, but in 2016 and 2017, a few studies showed that cells undergo a brief spike of transcription, which is quickly suppressed until the cell finishes dividing.

In their new study, the MIT team found that during mitosis, microcompartments are more likely to be found near the genes that spike during cell division. They also discovered that these loops appear to form as a result of the genome compaction that occurs during mitosis. This compaction brings enhancers and promoters closer together, allowing them to stick together to form microcompartments.

Once formed, the loops that constitute microcompartments may activate gene transcription somewhat by accident, which is then shut off by the cell. When the cell finishes dividing, entering a state known as G1, many of these small loops become weaker or disappear.

“It almost seems like this transcriptional spiking in mitosis is an undesirable accident that arises from generating a uniquely favorable environment for microcompartments to form during mitosis,” Hansen says. “Then, the cell quickly prunes and filters many of those loops out when it enters G1.”

Because chromosome compaction can also be influenced by a cell’s size and shape, the researchers are now exploring how variations in those features affect the structure of the genome and in turn, gene regulation.

“We are thinking about some natural biological settings where cells change shape and size, and whether we can perhaps explain some 3D genome changes that previously lack an explanation,” Hansen says. “Another key question is how does the cell then pick what are the microcompartments to keep and what are the microcompartments to remove when you enter G1, to ensure fidelity of gene expression?”

The research was funded in part by the National Institutes of Health, a National Science Foundation CAREER Award, the Gene Regulation Observatory of the Broad Institute, a Pew-Steward Scholar Award for Cancer Research, the Mathers Foundation, the MIT Westaway Fund, the Bridge Project of the Koch Institute and Dana-Farber/Harvard Cancer Center, and the Koch Institute Support (core) Grant from the National Cancer Institute.

Abrupt thaw alters phosphorus cycling in alpine tundra

Nature Climate Change - Fri, 10/17/2025 - 12:00am

Nature Climate Change, Published online: 17 October 2025; doi:10.1038/s41558-025-02466-z

The impacts of permafrost thaw are widespread across tundra landscapes. Now, research across a series of thermokarst landscapes on the Tibetan Plateau shows that abrupt permafrost thaw increases plant-available phosphorus, alters the vegetation community and tips the balance of belowground nutrient competition.

Accelerated soil phosphorus cycling upon abrupt permafrost thaw

Nature Climate Change - Fri, 10/17/2025 - 12:00am

Nature Climate Change, Published online: 17 October 2025; doi:10.1038/s41558-025-02445-4

The response of the phosphorus (P) cycle to permafrost thaw is unknown, but has implications for carbon dynamics. This study assesses changes in the P cycle upon abrupt thaw and shows accelerated soil P cycling and increased plant uptake, which may boost primary production and partially offset soil carbon loss.

Southern Ocean freshening stalls deep ocean CO<sub>2</sub> release in a changing climate

Nature Climate Change - Fri, 10/17/2025 - 12:00am

Nature Climate Change, Published online: 17 October 2025; doi:10.1038/s41558-025-02446-3

The Southern Ocean carbon sink is predicted to decline under climate change. This study explores why this is yet to be seen in observations, finding that recent surface freshening increases stratification and traps the CO2-rich water in the subsurface layer, which prevents atmospheric outgassing.

Damage development on Antarctic ice shelves sensitive to climate warming

Nature Climate Change - Fri, 10/17/2025 - 12:00am

Nature Climate Change, Published online: 17 October 2025; doi:10.1038/s41558-025-02453-4

Damages such as crevasses or cracks can be early indicators of ice shelf weakening. Here, the authors quantify changes in damage structures in Antarctic ice sheets, which show sensitivity to warming

Book reviews technologies aiming to remove carbon from the atmosphere

MIT Latest News - Thu, 10/16/2025 - 4:35pm

Two leading experts in the field of carbon capture and sequestration (CCS) — Howard J. Herzog, a senior research engineer in the MIT Energy Initiative, and Niall Mac Dowell, a professor in energy systems engineering at Imperial College London — explore methods for removing carbon dioxide already in the atmosphere in their new book, “Carbon Removal.” Published in October, the book is part of the Essential Knowledge series from the MIT Press, which consists of volumes “synthesizing specialized subject matter for nonspecialists” and includes Herzog’s 2018 book, “Carbon Capture.”

Burning fossil fuels, as well as other human activities, cause the release of carbon dioxide (CO2) into the atmosphere, where it acts like a blanket that warms the Earth, resulting in climate change. Much attention has focused on mitigation technologies that reduce emissions, but in their book, Herzog and Mac Dowell have turned their attention to “carbon dioxide removal” (CDR), an approach that removes carbon already present in the atmosphere.

In this new volume, the authors explain how CO2 naturally moves into and out of the atmosphere and present a brief history of carbon removal as a concept for dealing with climate change. They also describe the full range of “pathways” that have been proposed for removing CO2 from the atmosphere. Those pathways include engineered systems designed for “direct air capture” (DAC), as well as various “nature-based” approaches that call for planting trees or taking steps to enhance removal by biomass or the oceans. The book offers easily accessible explanations of the fundamental science and engineering behind each approach.

The authors compare the “quality” of the different pathways based on the following metrics:

Accounting. For public acceptance of any carbon-removal strategy, the authors note, the developers need to get the accounting right — and that’s not always easy. “If you’re going to spend money to get CO2 out of the atmosphere, you want to get paid for doing it,” notes Herzog. It can be tricky to measure how much you have removed, because there’s a lot of CO2 going in and out of the atmosphere all the time. Also, if your approach involves, say, burning fossil fuels, you must subtract the amount of CO2 that’s emitted from the total amount you claim to have removed. Then there’s the timing of the removal. With a DAC device, the removal happens right now, and the removed CO2 can be measured. “But if I plant a tree, it’s going to remove CO2 for decades. Is that equivalent to removing it right now?” Herzog queries. How to take that factor into account hasn’t yet been resolved.

Permanence. Different approaches keep the CO2 out of the atmosphere for different durations of time. How long is long enough? As the authors explain, this is one of the biggest issues, especially with nature-based solutions, where events such as wildfires or pestilence or land-use changes can release the stored CO2 back into the atmosphere. How do we deal with that?

Cost. Cost is another key factor. Using a DAC device to remove CO2 costs far more than planting trees, but it yields immediate removal of a measurable amount of CO2 that can then be locked away forever. How does one monetize that trade-off?

Additionality. “You’re doing this project, but would what you’re doing have been done anyway?” asks Herzog. “Is your effort additional to business as usual?” This question comes into play with many of the nature-based approaches involving trees, soils, and so on.

Permitting and governance. These issues are especially important — and complicated — with approaches that involve doing things in the ocean. In addition, Herzog points out that some CCS projects could also achieve carbon removal, but they would have a hard time getting permits to build the pipelines and other needed infrastructure.

The authors conclude that none of the CDR strategies now being proposed is a clear winner on all the metrics. However, they stress that carbon removal has the potential to play an important role in meeting our climate change goals — not by replacing our emissions-reduction efforts, but rather by supplementing them. However, as Herzog and Mac Dowell make clear in their book, many challenges must be addressed to move CDR from today’s speculation to deployment at scale, and the book supports the wider discussion about how to move forward. Indeed, the authors have fulfilled their stated goal: “to provide an objective analysis of the opportunities and challenges for CDR and to separate myth from reality.”

Breaking the old model of education with MIT Open Learning

MIT Latest News - Thu, 10/16/2025 - 3:15pm

At an age when many kids prefer to play games on their phones, 11-year-old Vivan Mirchandani wanted to explore physics videos. Little did he know that MIT Open Learning’s free online resources would change the course of his life. 

Now, at 16, Mirchandani is well on his way to a career as a physics scholar — all because he forged his own unconventional educational journey.

Nontraditional education has granted Mirchandani the freedom to pursue topics he’s personally interested in. This year, he wrote a paper on cosmology that proposes a new framework for understanding Einstein’s general theory of relativity. Other projects include expanding on fluid dynamics laws for cats, training an AI model to resemble the consciousness of his late grandmother, and creating his own digital twin. That’s in addition to his regular studies, regional science fairs, Model United Nations delegation, and a TEDEd Talk.

Mirchandani started down this path between the ages of 10 and 12, when he decided to read books and find online content about physics during the early Covid-19 lockdown in India. He was shocked to find that MIT Open Learning offers free course videos, lecture notes, exams, and other resources from the Institute on sites like MIT OpenCourseWare and the newly launched MIT Learn.

“My first course was 8.01 (Classical Mechanics), and it completely changed how I saw physics,” Mirchandani says. “Physics sounded like elegance. It’s the closest we’ve ever come to have a theory of everything.”

Experiencing “real learning”

Mirchandani discovered MIT Open Learning through OpenCourseWare, which offers free, online, open educational resources from MIT undergraduate and graduate courses. He says MIT Open Learning’s “academically rigorous” content prepares learners to ask questions and think like a scientist.

“Instead of rote memorization, I finally experienced real learning,” Mirchandani says. “OpenCourseWare was a holy grail. Without it, I would still be stuck on the basic concepts.”

Wanting to follow in the footsteps of physicists like Sir Isaac Newton, Albert Einstein, and Stephen Hawking, Mirchandani decided at age 12 he would sacrifice his grade point average to pursue a nontraditional educational path that gave him hands-on experience in science.

“The education system doesn’t prepare you for actual scientific research, it prepares you for exams,” Mirchandani says. “What draws me to MIT Open Learning and OpenCourseWare is it breaks the old model of education. It’s not about sitting in a lecture hall, it’s about access and experimentation.”

With guidance from his physics teacher, Mirchandani built his own curriculum using educational materials on MIT OpenCourseWare to progress from classical physics to computer science to quantum physics. He has completed more than 27 online MIT courses to date.

“The best part of OpenCourseWare is you get to study from the greatest institution in the world, and you don’t have to pay for it,” he says.

Innovating in the real world

6.0001 (Introduction to Computer Science and Programming Using Python) and slides from 2.06 (Fluid Dynamics) gave Mirchandani the foundation to help with the family business, Dynamech Engineers, which sells machinery for commercial snack production. Some of the recent innovations he has assisted with include a zero-oil frying technology that cuts 300 calories per kilogram, a gas-based heat exchange system, and a simplified, singular machine combining the processes of two separate machines. Using the modeling techniques he learned through MIT OpenCourseWare, Mirchandani designed how these products would work without losing efficiency.

But when you ask Mirchandani which achievement he is most proud of, he’ll say it’s being one of 35 students accepted for the inaugural RSI-India cohort, an academic program for high school students modeled after the Research Science Institute program co-sponsored by MIT and the Center for Excellence in Education. Competing against other Indian students who had perfect scores on their board exams and SATs, he didn’t expect to get in, but the program valued the practical research experience he was able to pursue thanks to the knowledge he gained from his external studies.

“None of it would have happened without MIT OpenCourseWare,” he says. “It’s basically letting curiosity get the better of us. If everybody does that, we’d have a better scientific community.”

Pages