MIT Latest News

Subscribe to MIT Latest News feed
MIT News is dedicated to communicating to the media and the public the news and achievements of the students, faculty, staff and the greater MIT community.
Updated: 4 hours 43 min ago

Accounting for uncertainty to help engineers design complex systems

Thu, 10/02/2025 - 12:00am

Designing a complex electronic device like a delivery drone involves juggling many choices, such as selecting motors and batteries that minimize cost while maximizing the payload the drone can carry or the distance it can travel.

Unraveling that conundrum is no easy task, but what happens if the designers don’t know the exact specifications of each battery and motor? On top of that, the real-world performance of these components will likely be affected by unpredictable factors, like changing weather along the drone’s route.

MIT researchers developed a new framework that helps engineers design complex systems in a way that explicitly accounts for such uncertainty. The framework allows them to model the performance tradeoffs of a device with many interconnected parts, each of which could behave in unpredictable ways.

Their technique captures the likelihood of many outcomes and tradeoffs, giving designers more information than many existing approaches which, at most, can usually only model best-case and worst-case scenarios.

Ultimately, this framework could help engineers develop complex systems like autonomous vehicles, commercial aircraft, or even regional transportation networks that are more robust and reliable in the face of real-world unpredictability.

“In practice, the components in a device never behave exactly like you think they will. If someone has a sensor whose performance is uncertain, and an algorithm that is uncertain, and the design of a robot that is also uncertain, now they have a way to mix all these uncertainties together so they can come up with a better design,” says Gioele Zardini, the Rudge and Nancy Allen Assistant Professor of Civil and Environmental Engineering at MIT, a principal investigator in the Laboratory for Information and Decision Systems (LIDS), an affiliate faculty with the Institute for Data, Systems, and Society (IDSS), and senior author of a paper on this framework.

Zardini is joined on the paper by lead author Yujun Huang, an MIT graduate student; and Marius Furter, a graduate student at the University of Zurich. The research will be presented at the IEEE Conference on Decision and Control.

Considering uncertainty

The Zardini Group studies co-design, a method for designing systems made of many interconnected components, from robots to regional transportation networks.

The co-design language breaks a complex problem into a series of boxes, each representing one component, that can be combined in different ways to maximize outcomes or minimize costs. This allows engineers to solve complex problems in a feasible amount of time.

In prior work, the researchers modeled each co-design component without considering uncertainty. For instance, the performance of each sensor the designers could choose for a drone was fixed.

But engineers often don’t know the exact performance specifications of each sensor, and even if they do, it is unlikely the senor will perfectly follow its spec sheet. At the same time, they don’t know how each sensor will behave once integrated into a complex device, or how performance will be affected by unpredictable factors like weather.

“With our method, even if you are unsure what the specifications of your sensor will be, you can still design the robot to maximize the outcome you care about,” says Furter.

To accomplish this, the researchers incorporated this notion of uncertainty into an existing framework based on category theory.

Using some mathematical tricks, they simplified the problem into a more general structure. This allows them to use the tools of category theory to solve co-design problems in a way that considers a range of uncertain outcomes.

By reformulating the problem, the researchers can capture how multiple design choices affect one another even when their individual performance is uncertain.

This approach is also simpler than many existing tools that typically require extensive domain expertise. With their plug-and-play system, one can rearrange the components in the system without violating any mathematical constraints.

And because no specific domain expertise is required, the framework could be used by a multidisciplinary team where each member designs one component of a larger system.

“Designing an entire UAV isn’t feasible for just one person, but designing a component of a UAV is. By providing the framework for how these components work together in a way that considers uncertainty, we’ve made it easier for people to evaluate the performance of the entire UAV system,” Huang says.

More detailed information

The researchers used this new approach to choose perception systems and batteries for a drone that would maximize its payload while minimizing its lifetime cost and weight.

While each perception system may offer a different detection accuracy under varying weather conditions, the designer doesn’t know exactly how its performance will fluctuate. This new system allows the designer to take these uncertainties into consideration when thinking about the drone’s overall performance.

And unlike other approaches, their framework reveals distinct advantages of each battery technology.

For instance, their results show that at lower payloads, nickel-metal hydride batteries provide the lowest expected lifetime cost. This insight would be impossible to fully capture without accounting for uncertainty, Zardini says.

While another method might only be able to show the best-case and worst-case performance scenarios of lithium polymer batteries, their framework gives the user more detailed information.

For example, it shows that if the drone’s payload is 1,750 grams, there is a 12.8 percent chance the battery design would be infeasible.

“Our system provides the tradeoffs, and then the user can reason about the design,” he adds.

In the future, the researchers want to improve the computational efficiency of their problem-solving algorithms. They also want to extend this approach to situations where a system is designed by multiple parties that are collaborative and competitive, like a transportation network in which rail companies operate using the same infrastructure.

“As the complexity of systems grow, and involves more disparate components, we need a formal framework in which to design these systems. This paper presents a way to compose large systems from modular components, understand design trade-offs, and importantly do so with a notion of uncertainty. This creates an opportunity to formalize the design of large-scale systems with learning-enabled components,” says Aaron Ames, the Bren Professor of Mechanical and Civil Engineering, Control and Dynamical Systems, and Aerospace at Caltech, who was not involved with this research. 

MIT OpenCourseWare is “a living testament to the nobility of open, unbounded learning”

Wed, 10/01/2025 - 4:30pm

Mostafa Fawzy became interested in physics in high school. It was the “elegance and paradox” of quantum theory that got his attention and led to his studies at the undergraduate and graduate level. But even with a solid foundation of coursework and supportive mentors, Fawzy wanted more. MIT Open Learning’s OpenCourseWare was just the thing he was looking for.  

Now a doctoral candidate in atomic physics at Alexandria University and an assistant lecturer of physics at Alamein International University in Egypt, Fawzy reflects on how MIT OpenCourseWare bolstered his learning early in his graduate studies in 2019.  

Part of MIT Open Learning, OpenCourseWare offers free, online, open educational resources from more than 2,500 courses that span the MIT undergraduate and graduate curriculum. Fawzy was looking for advanced resources to supplement his research in quantum mechanics and theoretical physics, and he was immediately struck by the quality, accessibility, and breadth of MIT’s resources. 

“OpenCourseWare was transformative in deepening my understanding of advanced physics,” Fawzy says. “I found the structured lectures and assignments in quantum physics particularly valuable. They enhanced both my theoretical insight and practical problem-solving skills — skills I later applied in research on atomic systems influenced by magnetic fields and plasma environments.”  

He completed educational resources including Quantum Physics I and Quantum Physics II, calling them “dense and mathematically sophisticated.” He met the challenge by engaging with the content in different ways: first, by simply listening to lectures, then by taking detailed notes, and finally by working though problem sets. Although initially he struggled to keep up, this methodical approach paid off, he says. 

Fawzy is now in the final stages of his doctoral research on high-precision atomic calculations under extreme conditions. While in graduate school, he has published eight peer-reviewed international research papers, making him one of the most prolific doctoral researchers in physics working in Egypt currently. He served as an ambassador for the United Nations International Youth Conference (IYC), and he was nominated for both the African Presidential Leadership Program and the Davisson–Germer Prize in Atomic or Surface Physics, a prestigious annual prize offered by the American Physical Society.  

He is grateful to his undergraduate mentors, professors M. Sakr and T. Bahy of Alexandria University, as well as to MIT OpenCourseWare, calling it a “steadfast companion through countless solitary nights of study, a beacon in times when formal resources were scarce, and a living testament to the nobility of open, unbounded learning.”  

Recognizing the power of mentorship and teaching, Fawzy serves as an academic mentor with the African Academy of Sciences, supporting early-career researchers across the continent in theoretical and atomic physics.  

“Many of these mentees lack access to advanced academic resources,” he explains. “I regularly incorporate OpenCourseWare into our mentorship sessions, using it as a foundational teaching and reference tool. It’s an equalizer, providing the same high-caliber content to students regardless of geographical or institutional limitations.” 

As he looks toward the future, Fawzy has big plans, influenced by MIT. 

“I aspire to establish a regional center for excellence in atomic and plasma physics, blending cutting-edge research with open-access education in the Global South,” he says. 

As he continues his research and teaching, he also hopes to influence science policy and contribute to international partnerships that shine the spotlight on research and science in emerging nations.  

Along the way, he says, “OpenCourseWare remains a cornerstone resource that I will return to again and again.”  

Fawzy says he’s also interested in MIT Open Learning resources in computational physics and energy and sustainability. He’s following MIT’s Energy Initiative, calling it increasingly relevant to his current work and future plans.  

Fawzy is a proponent of open learning and a testament to its power. 

“The intellectual seeds sown by Open Learning resources such as MIT OpenCourseWare have flourished within me, shaping my identity as a physicist and affirming my deep belief in the transformative power of knowledge shared freely, without barriers,” he says. 

Concrete “battery” developed at MIT now packs 10 times the power

Wed, 10/01/2025 - 4:25pm

Concrete already builds our world, and now it’s one step closer to powering it, too. Made by combining cement, water, ultra-fine carbon black (with nanoscale particles), and electrolytes, electron-conducting carbon concrete (ec3, pronounced “e-c-cubed”) creates a conductive “nanonetwork” inside concrete that could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy. In other words, the concrete around us could one day double as giant “batteries.”

As MIT researchers report in a new PNAS paper, optimized electrolytes and manufacturing processes have increased the energy storage capacity of the latest ec3 supercapacitors by an order of magnitude. In 2023, storing enough energy to meet the daily needs of the average home would have required about 45 cubic meters of ec3, roughly the amount of concrete used in a typical basement. Now, with the improved electrolyte, that same task can be achieved with about 5 cubic meters, the volume of a typical basement wall.

“A key to the sustainability of concrete is the development of ‘multifunctional concrete,’ which integrates functionalities like this energy storage, self-healing, and carbon sequestration. Concrete is already the world’s most-used construction material, so why not take advantage of that scale to create other benefits?” asks Admir Masic, lead author of the new study, MIT Electron-Conducting Carbon-Cement-Based Materials Hub (EC³ Hub) co-director, and associate professor of civil and environmental engineering (CEE) at MIT.

The improved energy density was made possible by a deeper understanding of how the nanocarbon black network inside ec3 functions and interacts with electrolytes. Using focused ion beams for the sequential removal of thin layers of the ec3 material, followed by high-resolution imaging of each slice with a scanning electron microscope (a technique called FIB-SEM tomography), the team across the EC³ Hub and MIT Concrete Sustainability Hub was able to reconstruct the conductive nanonetwork at the highest resolution yet. This approach allowed the team to discover that the network is essentially a fractal-like “web” that surrounds ec3 pores, which is what allows the electrolyte to infiltrate and for current to flow through the system. 

“Understanding how these materials ‘assemble’ themselves at the nanoscale is key to achieving these new functionalities,” adds Masic.

Equipped with their new understanding of the nanonetwork, the team experimented with different electrolytes and their concentrations to see how they impacted energy storage density. As Damian Stefaniuk, first author and EC³ Hub research scientist, highlights, “we found that there is a wide range of electrolytes that could be viable candidates for ec3. This even includes seawater, which could make this a good material for use in coastal and marine applications, perhaps as support structures for offshore wind farms.”

At the same time, the team streamlined the way they added electrolytes to the mix. Rather than curing ec3 electrodes and then soaking them in electrolyte, they added the electrolyte directly into the mixing water. Since electrolyte penetration was no longer a limitation, the team could cast thicker electrodes that stored more energy.

The team achieved the greatest performance when they switched to organic electrolytes, especially those that combined quaternary ammonium salts — found in everyday products like disinfectants — with acetonitrile, a clear, conductive liquid often used in industry. A cubic meter of this version of ec3 — about the size of a refrigerator — can store over 2 kilowatt-hours of energy. That’s about enough to power an actual refrigerator for a day.

While batteries maintain a higher energy density, ec3 can in principle be incorporated directly into a wide range of architectural elements — from slabs and walls to domes and vaults — and last as long as the structure itself.

“The Ancient Romans made great advances in concrete construction. Massive structures like the Pantheon stand to this day without reinforcement. If we keep up their spirit of combining material science with architectural vision, we could be at the brink of a new architectural revolution with multifunctional concretes like ec3,” proposes Masic.

Taking inspiration from Roman architecture, the team built a miniature ec3 arch to show how structural form and energy storage can work together. Operating at 9 volts, the arch supported its own weight and additional load while powering an LED light.

However, something unique happened when the load on the arch increased: the light flickered. This is likely due to the way stress impacts electrical contacts or the distribution of charges. “There may be a kind of self-monitoring capacity here. If we think of an ec3 arch at architectural scale, its output may fluctuate when it’s impacted by a stressor like high winds. We may be able to use this as a signal of when and to what extent a structure is stressed, or monitor its overall health in real time,” envisions Masic.

The latest developments in ec³ technology bring it a step closer to real-world scalability. It’s already been used to heat sidewalk slabs in Sapporo, Japan, due to its thermally conductive properties, representing a potential alternative to salting. “With these higher energy densities and demonstrated value across a broader application space, we now have a powerful and flexible tool that can help us address a wide range of persistent energy challenges,” explains Stefaniuk. “One of our biggest motivations was to help enable the renewable energy transition. Solar power, for example, has come a long way in terms of efficiency. However, it can only generate power when there’s enough sunlight. So, the question becomes: How do you meet your energy needs at night, or on cloudy days?”

Franz-Josef Ulm, EC³ Hub co-director and CEE professor, continues the thread: “The answer is that you need a way to store and release energy. This has usually meant a battery, which often relies on scarce or harmful materials. We believe that ec3 is a viable substitute, letting our buildings and infrastructure meet our energy storage needs.” The team is working toward applications like parking spaces and roads that could charge electric vehicles, as well as homes that can operate fully off the grid.

“What excites us most is that we’ve taken a material as ancient as concrete and shown that it can do something entirely new,” says James Weaver, a co-author on the paper who is an associate professor of design technology and materials science and engineering at Cornell University, as well as a former EC³ Hub researcher. “By combining modern nanoscience with an ancient building block of civilization, we’re opening a door to infrastructure that doesn’t just support our lives, it powers them.”

Palladium filters could enable cheaper, more efficient generation of hydrogen fuel

Wed, 10/01/2025 - 2:00pm

Palladium is one of the keys to jump-starting a hydrogen-based energy economy. The silvery metal is a natural gatekeeper against every gas except hydrogen, which it readily lets through. For its exceptional selectivity, palladium is considered one of the most effective materials at filtering gas mixtures to produce pure hydrogen.

Today, palladium-based membranes are used at commercial scale to provide pure hydrogen for semiconductor manufacturing, food processing, and fertilizer production, among other applications in which the membranes operate at modest temperatures. If palladium membranes get much hotter than around 800 kelvins, they can break down.

Now, MIT engineers have developed a new palladium membrane that remains resilient at much higher temperatures. Rather than being made as a continuous film, as most membranes are, the new design is made from palladium that is deposited as “plugs” into the pores of an underlying supporting material. At high temperatures, the snug-fitting plugs remain stable and continue separating out hydrogen, rather than degrading as a surface film would.

The thermally stable design opens opportunities for membranes to be used in hydrogen-fuel-generating technologies such as compact steam methane reforming and ammonia cracking — technologies that are designed to operate at much higher temperatures to produce hydrogen for zero-carbon-emitting fuel and electricity.

“With further work on scaling and validating performance under realistic industrial feeds, the design could represent a promising route toward practical membranes for high-temperature hydrogen production,” says Lohyun Kim PhD ’24, a former graduate student in MIT’s Department of Mechanical Engineering.

Kim and his colleagues report details of the new membrane in a study appearing today in the journal Advanced Functional Materials. The study’s co-authors are Randall Field, director of research at the MIT Energy Initiative (MITEI); former MIT chemical engineering graduate student Chun Man Chow PhD ’23; Rohit Karnik, the Jameel Professor in the Department of Mechanical Engineering at MIT and the director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS); and Aaron Persad, a former MIT research scientist in mechanical engineering who is now an assistant professor at the University of Maryland Eastern Shore.

Compact future

The team’s new design came out of a MITEI project related to fusion energy. Future fusion power plants, such as the one MIT spinout Commonwealth Fusion Systems is designing, will involve circulating hydrogen isotopes of deuterium and tritium at extremely high temperatures to produce energy from the isotopes’ fusing. The reactions inevitably produce other gases that will have to be separated, and the hydrogen isotopes will be recirculated into the main reactor for further fusion.

Similar issues arise in a number of other processes for producing hydrogen, where gases must be separated and recirculated back into a reactor. Concepts for such recirculating systems would require first cooling down the gas before it can pass through hydrogen-separating membranes — an expensive and energy-intensive step that would involve additional machinery and hardware.

“One of the questions we were thinking about is: Can we develop membranes which could be as close to the reactor as possible, and operate at higher temperatures, so we don’t have to pull out the gas and cool it down first?” Karnik says. “It would enable more energy-efficient, and therefore cheaper and compact, fusion systems.”

The researchers looked for ways to improve the temperature resistance of palladium membranes. Palladium is the most effective metal used today to separate hydrogen from a variety of gas mixtures. It naturally attracts hydrogen molecules (H2) to its surface, where the metal’s electrons interact with and weaken the molecule’s bonds, causing H2 to temporarily break apart into its respective atoms. The individual atoms then diffuse through the metal and join back up on the other side as pure hydrogen.

Palladium is highly effective at permeating hydrogen, and only hydrogen, from streams of various gases. But conventional membranes typically can operate at temperatures of up to 800 kelvins before the film starts to form holes or clumps up into droplets, allowing other gases to flow through.

Plugging in

Karnik, Kim and their colleagues took a different design approach. They observed that at high temperatures, palladium will start to shrink up. In engineering terms, the material is acting to reduce surface energy. To do this, palladium, and most other materials and even water, will pull apart and form droplets with the smallest surface energy. The lower the surface energy, the more stable the material can be against further heating.

This gave the team an idea: If a supporting material’s pores could be “plugged” with deposits of palladium — essentially already forming a droplet with the lowest surface energy — the tight quarters might substantially increase palladium’s heat tolerance while preserving the membrane’s selectivity for hydrogen.

To test this idea, they fabricated small chip-sized samples of membrane using a porous silica supporting layer (each pore measuring about half a micron wide), onto which they deposited a very thin layer of palladium. They applied techniques to essentially grow the palladium into the pores, and polished down the surface to remove the palladium layer and leave palladium only inside the pores.

They then placed samples in a custom-built apparatus in which they flowed hydrogen-containing gas of various mixtures and temperatures to test its separation performance. The membranes remained stable and continued to separate hydrogen from other gases even after experiencing temperatures of up to 1,000 kelvins for over 100 hours — a significant improvement over conventional film-based membranes.

“The use of palladium film membranes are generally limited to below around 800 kelvins, at which point they degrade,” Kim says. “Our plug design therefore extends palladium’s effective heat resilience by roughly at least 200 kelvins and maintains integrity far longer under extreme conditions.”

These conditions are within the range of hydrogen-generating technologies such as steam methane reforming and ammonia cracking.

Steam methane reforming is an established process that has required complex, energy-intensive systems to preprocess methane to a form where pure hydrogen can be extracted. Such preprocessing steps could be replaced with a compact “membrane reactor,” through which a methane gas would directly flow, and the membrane inside would filter out pure hydrogen. Such reactors would significantly cut down the size, complexity, and cost of producing hydrogen from steam methane reforming, and Kim estimates a membrane would have to work reliably in temperatures of up to nearly 1,000 kelvins. The team’s new membrane could work well within such conditions.

Ammonia cracking is another way to produce hydrogen, by “cracking” or breaking apart ammonia. As ammonia is very stable in liquid form, scientists envision that it could be used as a carrier for hydrogen and be safely transported to a hydrogen fuel station, where ammonia could be fed into a membrane reactor that again pulls out hydrogen and pumps it directly into a fuel cell vehicle. Ammonia cracking is still largely in pilot and demonstration stages, and Kim says any membrane in an ammonia cracking reactor would likely operate at temperatures of around 800 kelvins — within the range of the group’s new plug-based design.

Karnik emphasizes that their results are just a start. Adopting the membrane into working reactors will require further development and testing to ensure it remains reliable over much longer periods of time.

“We showed that instead of making a film, if you make discretized nanostructures you can get much more thermally stable membranes,” Karnik says. “It provides a pathway for designing membranes for extreme temperatures, with the added possibility of using smaller amounts of expensive palladium, toward making hydrogen production more efficient and affordable. There is potential there.”

This work was supported by Eni S.p.A. via the MIT Energy Initiative.

A cysteine-rich diet may promote regeneration of the intestinal lining, study suggests

Wed, 10/01/2025 - 11:00am

A diet rich in the amino acid cysteine may have rejuvenating effects in the small intestine, according to a new study from MIT. This amino acid, the researchers discovered, can turn on an immune signaling pathway that helps stem cells to regrow new intestinal tissue.

This enhanced regeneration may help to heal injuries from radiation, which often occur in patients undergoing radiation therapy for cancer. The research was conducted in mice, but if future research shows similar results in humans, then delivering elevated quantities of cysteine, through diet or supplements, could offer a new strategy to help damaged tissue heal faster, the researchers say.

“The study suggests that if we give these patients a cysteine-rich diet or cysteine supplementation, perhaps we can dampen some of the chemotherapy or radiation-induced injury,” says Omer Yilmaz, director of the MIT Stem Cell Initiative, an associate professor of biology at MIT, and a member of MIT’s Koch Institute for Integrative Cancer Research. “The beauty here is we’re not using a synthetic molecule; we’re exploiting a natural dietary compound.”

While previous research has shown that certain types of diets, including low-calorie diets, can enhance intestinal stem cell activity, the new study is the first to identify a single nutrient that can help intestinal cells to regenerate.

Yilmaz is the senior author of the study, which appears today in Nature. Koch Institute postdoc Fangtao Chi is the paper’s lead author.

Boosting regeneration

It is well-established that diet can affect overall health: High-fat diets can lead to obesity, diabetes, and other health problems, while low-calorie diets have been shown to extend lifespans in many species. In recent years, Yilmaz’s lab has investigated how different types of diets influence stem cell regeneration, and found that high-fat diets, as well as short periods of fasting, can enhance stem cell activity in different ways.

“We know that macro diets such as high-sugar diets, high-fat diets, and low-calorie diets have a clear impact on health. But at the granular level, we know much less about how individual nutrients impact stem cell fate decisions, as well as tissue function and overall tissue health,” Yilmaz says.

In their new study, the researchers began by feeding mice a diet high in one of 20 different amino acids, the building blocks of proteins. For each group, they measured how the diet affected intestinal stem cell regeneration. Among these amino acids, cysteine had the most dramatic effects on stem cells and progenitor cells (immature cells that differentiate into adult intestinal cells).

Further studies revealed that cysteine initiates a chain of events leading to the activation of a population of immune cells called CD8 T cells. When cells in the lining of the intestine absorb cysteine from digested food, they convert it into CoA, a cofactor that is released into the mucosal lining of the intestine. There, CD8 T cells absorb CoA, which stimulates them to begin proliferating and producing a cytokine called IL-22.

IL-22 is an important player in the regulation of intestinal stem cell regeneration, but until now, it wasn’t known that CD8 T cells can produce it to boost intestinal stem cells. Once activated, those IL-22-releasing T cells are primed to help combat any kind of injury that could occur within the intestinal lining.

“What’s really exciting here is that feeding mice a cysteine-rich diet leads to the expansion of an immune cell population that we typically don’t associate with IL-22 production and the regulation of intestinal stemness,” Yilmaz says. “What happens in a cysteine-rich diet is that the pool of cells that make IL-22 increases, particularly the CD8 T-cell fraction.”

These T cells tend to congregate within the lining of the intestine, so they are already in position when needed. The researchers found that the stimulation of CD8 T cells occurred primarily in the small intestine, not in any other part of the digestive tract, which they believe is because most of the protein that we consume is absorbed by the small intestine.

Healing the intestine

In this study, the researchers showed that regeneration stimulated by a cysteine-rich diet could help to repair radiation damage to the intestinal lining. Also, in work that has not been published yet, they showed that a high-cysteine diet had a regenerative effect following treatment with a chemotherapy drug called 5-fluorouracil. This drug, which is used to treat colon and pancreatic cancers, can also damage the intestinal lining.

Cysteine is found in many high-protein foods, including meat, dairy products, legumes, and nuts. The body can also synthesize its own cysteine, by converting the amino acid methionine to cysteine — a process that takes place in the liver. However, cysteine produced in the liver is distributed through the entire body and doesn’t lead to a buildup in the small intestine the way that consuming cysteine in the diet does.

“With our high-cysteine diet, the gut is the first place that sees a high amount of cysteine,” Chi says.

Cysteine has been previously shown to have antioxidant effects, which are also beneficial, but this study is the first to demonstrate its effect on intestinal stem cell regeneration. The researchers now hope to study whether it may also help other types of stem cells regenerate new tissues. In one ongoing study, they are investigating whether cysteine might stimulate hair follicle regeneration.

They also plan to further investigate some of the other amino acids that appear to influence stem cell regeneration.

“I think we’re going to uncover multiple new mechanisms for how these amino acids regulate cell fate decisions and gut health in the small intestine and colon,” Yilmaz says.

The research was funded, in part, by the National Institutes of Health, the V Foundation, the Koch Institute Frontier Research Program via the Kathy and Curt Marble Cancer Research Fund, the Bridge Project — a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center, the American Federation for Aging Research, the MIT Stem Cell Initiative, and the Koch Institute Support (core) Grant from the National Cancer Institute.

System lets people personalize online social spaces while staying connected with others

Wed, 10/01/2025 - 10:00am

Say a local concert venue wants to engage its community by giving social media followers an easy way to share and comment on new music from emerging artists. Rather than working within the constraints of existing social platforms, the venue might want to create its own social app with the functionality that would be best for its community. But building a new social app from scratch involves many complicated programming steps, and even if the venue can create a customized app, the organization’s followers may be unwilling to join the new platform because it could mean leaving their connections and data behind.

Now, researchers from MIT have launched a framework called Graffiti that makes building personalized social applications easier, while allowing users to migrate between multiple applications without losing their friends or data.

“We want to empower people to have control over their own designs rather than having them dictated from the top down,” says electrical engineering and computer science graduate student Theia Henderson.

Henderson and her colleagues designed Graffiti with a flexible structure so individuals have the freedom to create a variety of customized applications, from messenger apps like WhatsApp to microblogging platforms like X to location-based social networking sites like Nextdoor, all using only front-end development tools like HTML.

The protocol ensures all applications can interoperate, so content posted on one application can appear on any other application, even those with disparate designs or functionality. Importantly, Graffiti users retain control of their data, which is stored on a decentralized infrastructure rather than being held by a specific application.

While the pros and cons of implementing Graffiti at scale remain to be fully explored, the researchers hope this new approach can someday lead to healthier online interactions.

“We’ve shown that you can have a rich social ecosystem where everyone owns their own data and can use whatever applications they want to interact with whoever they want in whatever way they want. And they can have their own experiences without losing connection with the people they want to stay connected with,” says David Karger, professor of EECS and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

Henderson, the lead author, and Karger are joined by MIT Research Scientist David D. Clark on a paper about Graffiti, which will be presented at the ACM Symposium on User Interface Software and Technology.

Personalized, integrated applications

With Graffiti, the researchers had two main goals: to lower the barrier to creating personalized social applications and to enable those personalized applications to interoperate without requiring permission from developers.

To make the design process easier, they built a collective back-end infrastructure that all applications access to store and share content. This means developers don’t need to write any complex server code. Instead, designing a Graffiti application is more like making a website using popular tools like Vue.

Developers can also easily introduce new features and new types of content, giving them more freedom and fostering creativity.

“Graffiti is so straightforward that we used it as the infrastructure for the intro to web design class I teach, and students were able to write the front-end very easily to come up with all sorts of applications,” Karger says.

The open, interoperable nature of Graffiti means no one entity has the power to set a moderation policy for the entire platform. Instead, multiple competing and contradictory moderation services can operate, and people can choose the ones they like. 

Graffiti uses the idea of “total reification,” where every action taken in Graffiti, such as liking, sharing, or blocking a post, is represented and stored as its own piece of data. A user can configure their social application to interpret or ignore those data using its own rules.

For instance, if an application is designed so a certain user is a moderator, posts blocked by that user won’t appear in the application. But for an application with different rules where that person isn’t considered a moderator, other users might just see a warning or no flag at all.

“Theia’s system lets each person pick their own moderators, avoiding the one-sized-fits-all approach to moderation taken by the major social platforms,” Karger says.

But at the same time, having no central moderator means there is no one to remove content from the platform that might be offensive or illegal.

“We need to do more research to understand if that is going to provide real, damaging consequences or if the kind of personal moderation we created can provide the protections people need,” he adds.

Empowering social media users

The researchers also had to overcome a problem known as context collapse, which conflicts with their goal of interoperation.

For instance, context collapse would occur if a person’s Tinder profile appeared on LinkedIn, or if a post intended for one group, like close friends, would create conflict with another group, such as family members. Context collapse can lead to anxiety and have social repercussions for the user and their different communities.

“We realize that interoperability can sometimes be a bad thing. People have boundaries between different social contexts, and we didn’t want to violate those,” Henderson says.

To avoid context collapse, the researchers designed Graffiti so all content is organized into distinct channels. Channels are flexible and can represent a variety of contexts, such as people, applications, locations, etc.

If a user’s post appears in an application channel but not their personal channel, others using that application will see the post, but those who only follow this user will not.

“Individuals should have the power to choose the audience for whatever they want to say,” Karger adds.

The researchers created multiple Graffiti applications to showcase personalization and interoperability, including a community-specific application for a local concert venue, a text-centric microblogging platform patterned off X, a Wikipedia-like application that enables collective editing, and a real-time messaging app with multiple moderation schemes patterned off WhatsApp and Slack.

“It also leaves room to create so many social applications people haven’t thought of yet. I’m really excited to see what people come up with when they are given full creative freedom,” Henderson says.

In the future, she and her colleagues want to explore additional social applications they could build with Graffiti. They also intend to incorporate tools like graphical editors to simplify the design process. In addition, they want to strengthen Graffiti’s security and privacy.

And while there is still a long way to go before Graffiti could be implemented at scale, the researchers are currently running a user study as they explore the potential positive and negative impacts the system could have on the social media landscape. 

Pages