MIT Latest News

Subscribe to MIT Latest News feed
MIT News is dedicated to communicating to the media and the public the news and achievements of the students, faculty, staff and the greater MIT community.
Updated: 10 hours 11 min ago

Exploring data and its influence on political behavior

Mon, 07/07/2025 - 10:00am

Data and politics are becoming increasingly intertwined. Today’s political campaigns and voter mobilization efforts are now entirely data-driven. Voters, pollsters, and elected officials are relying on data to make choices that have local, regional, and national impacts.

A Department of Political Science course offers students tools to help make sense of these choices and their outcomes.

In class 17.831 (Data and Politics), students are introduced to principles and practices necessary to understand electoral and other types of political behavior. Taught by associate professor of political science Daniel Hidalgo, students use real-world datasets to explore topics like election polling and prediction, voter turnout, voter targeting, and shifts in public opinion over time.

The course wants students to describe why and how the use of data and statistical methods has changed electoral politics, understand the basic principles of social science statistics, and analyze data using modern statistical computing tools. The course capstone is an original project that involves the collection, analysis, and interpretation of original survey data used in modern campaigns.

“I wanted to create an applied, practice-based course that would appeal to undergraduates and provide a foundation for parsing, understanding, and reporting on large datasets in politics,” says Hidalgo, who redesigned the course for the spring 2025 semester.

Hidalgo, who also works in the Political Methodology Lab at MIT, investigates the political economy of elections, campaigns, and representation in developing democracies, especially in Latin America, as well as quantitative methods in the social sciences.

Politics and modernity

The influence of, and access to, artificial intelligence and large language models makes a course like Data and Politics even more important, Hidalgo says. “You have to understand the people at the other end of the data,” he argues.

The course also centers the human element in politics, exploring conflict, bias, their structures, and impacts while also working to improve information literacy and coherent storytelling.

“Data analysis and collection will never be perfect,” Hidalgo says. “But analyzing and understanding who holds which ideas, and why, and using the information to tell a coherent story is valuable in politics and elsewhere.”

The “always on” nature of news and related content, coupled with the variety of communications channels available to voters, has increased the complexity of the data collection process in polling and campaigns. “In the past, people would answer the phone when you called their homes,” Hidalgo notes, describing analog methods previously used to collect voter data. Now, political scientists, data analysts, and others must contend with the availability of streaming content, mobile devices, and other channels comprising a vast, fractured media ecosystem.

The course opens a window into what happens behind the scenes of local and national political campaigns, which appealed to second-year political science major Jackson Hamilton. “I took this class hoping to expand my ability to use coding for political science applications, and in order to better understand how political models and predictions work,” he says.

“We tailor-made our own sets of questions and experimental designs that we thought would be interesting,” Hamilton adds. “I found that political issues that get a lot of media coverage are not necessarily the same issues which divide lawmakers, at least locally.”

Transparency and accountability in politics and other areas

Teaching students to use tools like polling and data analysis effectively can improve their ability to identify and combat disinformation and misinformation. “As a political scientist, I’m substantively engaged,” Hidalgo says, “and I’d like to help others be engaged, too.”

“There’s lots of data available, and this course provides a foundation and the resources necessary to understand and visualize it,” Hidalgo continues. “The ability to design, implement, and understand surveys has value inside and outside the classroom.”

In politics, Hidalgo believes equipping students to navigate these spaces effectively can potentially improve and increase civic engagement. Data, he says, can help defend ideas. “There’s so much information, it’s important to develop the skills and abilities necessary to understand and visualize it,” he says. “This has value for everyone.”

Second-year physics major Sean Wilson, who also took the class this spring, notes the value of data visualization and analysis both as a potential physicist and a voter. “Data analysis in both politics and in physics is essential work given that voting tendencies, public opinion, and government leadership change so often in the United States,” he says, “and that modeling can be used to support physical hypotheses and improve our understanding of how things work.”

For Wilson, the course can help anyone interested in understanding large groups’ behaviors. “Political scientists are constantly working to better understand how and why certain events occur in U.S. politics, and data analysis is an effective tool for doing so,” he says. “Members of a representative democracy can make better decisions with this kind of information.”

Hamilton, meanwhile, learned more about the behind-the-scenes machinery at work in electoral politics. “I had the opportunity to create a couple of budget trade-off questions, to get a sense of what people actually thought the government should spend money on when they had to make choices,” he says.

“Computer science and data science aren’t just useful for STEM applications; data science approaches can also be extremely useful in many social sciences,” Hamilton argues.

“[Hidalgo helped me realize] that I needed to understand and use data science approaches to gain a deeper understanding of my areas of interest,” Hamilton says. “He focuses on how different approaches in coding can be applied to different types of problems in political science.” 

Study shows how a common fertilizer ingredient benefits plants

Mon, 07/07/2025 - 8:00am

Lanthanides are a class of rare earth elements that in many countries are added to fertilizer as micronutrients to stimulate plant growth. But little is known about how they are absorbed by plants or influence photosynthesis, potentially leaving their benefits untapped.

Now, researchers from MIT have shed light on how lanthanides move through and operate within plants. These insights could help farmers optimize their use to grow some of the world’s most popular crops.

Published today in the Journal of the American Chemical Society, the study shows that a single nanoscale dose of lanthanides applied to seeds can make some of the world’s most common crops more resilient to UV stress. The researchers also uncovered the chemical processes by which lanthanides interact with the chlorophyll pigments that drive photosynthesis, showing that different lanthanide elements strengthen chlorophyll by replacing the magnesium at its center.

“This is a first step to better understand how these elements work in plants, and to provide an example of how they could be better delivered to plants, compared to simply applying them in the soil,” says Associate Professor Benedetto Marelli, who conducted the research with postdoc Giorgio Rizzo. “This is the first example of a thorough study showing the effects of lanthanides on chlorophyll, and their beneficial effects to protect plants from UV stress.”

Inside plant connections

Certain lanthanides are used as contrast agents in MRI and for applications including light-emitting diodes, solar cells, and lasers. Over the last 50 years, lanthanides have become increasingly used in agriculture to enhance crop yields, with China alone applying lanthanide-based fertilizers to nearly 4 million hectares of land each year.

“Lanthanides have been considered for a long time to be biologically irrelevant, but that’s changed in agriculture, especially in China,” says Rizzo, the paper’s first author. “But we largely don’t know how lanthanides work to benefit plants — nor do we understand their uptake mechanisms from plant tissues.”

Recent studies have shown that low concentrations of lanthanides can promote plant growth, root elongation, hormone synthesis, and stress tolerance, but higher doses can cause harm to plants. Striking the right balance has been hard because of our lack of understanding around how lanthanides are absorbed by plants or how they interact with root soil.

For the study, the researchers leveraged seed coating and treatment technologies they previously developed to investigate the way the plant pigment chlorophyll interacts with lanthanides, both inside and outside of plants. Up until now, researchers haven’t been sure whether chlorophyll interacts with lanthanide ions at all.

Chlorophyll drives photosynthesis, but the pigments lose their ability to efficiently absorb light when the magnesium ion at their core is removed. The researchers discovered that lanthanides can fill that void, helping chlorophyll pigments partially recover some of their optical properties in a process known as re-greening.

“We found that lanthanides can boost several parameters of plant health,” Marelli says. “They mostly accumulate in the roots, but a small amount also makes its way to the leaves, and some of the new chlorophyll molecules made in leaves have lanthanides incorporated in their structure.”

This study also offers the first experimental evidence that lanthanides can increase plant resilience to UV stress, something the researchers say was completely unexpected.

“Chlorophylls are very sensitive pigments,” Rizzo says. “They can convert light to energy in plants, but when they are isolated from the cell structure, they rapidly hydrolyze and degrade. However, in the form with lanthanides at their center, they are pretty stable, even after extracting them from plant cells.”

The researchers, using different spectroscopic techniques, found the benefits held across a range of staple crops, including chickpea, barley, corn, and soybeans.

The findings could be used to boost crop yield and increase the resilience of some of the world’s most popular crops to extreme weather.

“As we move into an environment where extreme heat and extreme climate events are more common, and particularly where we can have prolonged periods of sun in the field, we want to provide new ways to protect our plants,” Marelli says. “There are existing agrochemicals that can be applied to leaves for protecting plants from stressors such as UV, but they can be toxic, increase microplastics, and can require multiple applications. This could be a complementary way to protect plants from UV stress.”

Identifying new applications

The researchers also found that larger lanthanide elements like lanthanum were more effective at strengthening chlorophyll pigments than smaller ones. Lanthanum is considered a low-value byproduct of rare earths mining, and can become a burden to the rare earth element (REE) supply chain due to the need to separate it from more desirable rare earths. Increasing the demand for lanthanum could diversify the economics of REEs and improve the stability of their supply chain, the scientists suggest.

“This study shows what we could do with these lower-value metals,” Marelli says. “We know lanthanides are extremely useful in electronics, magnets, and energy. In the U.S., there’s a big push to recycle them. That’s why for the plant studies, we focused on lanthanum, being the most abundant, cheapest lanthanide ion.”

Moving forward, the team plans to explore how lanthanides work with other biological molecules, including proteins in the human body.

In agriculture, the team hopes to scale up its research to include field and greenhouse studies to continue testing the results of UV resilience on different crop types and in experimental farm conditions.

“Lanthanides are already widely used in agriculture,” Rizzo says. “We hope this study provides evidence that allows more conscious use of them and also a new way to apply them through seed treatments.”

The research was supported by the MIT Climate Grand Challenge and the Office for Naval Research.

Pages