MIT Latest News

Subscribe to MIT Latest News feed
MIT News is dedicated to communicating to the media and the public the news and achievements of the students, faculty, staff and the greater MIT community.
Updated: 12 hours 58 min ago

Theory-guided strategy expands the scope of measurable quantum interactions

Thu, 07/24/2025 - 12:00am

A new theory-guided framework could help scientists probe the properties of new semiconductors for next-generation microelectronic devices, or discover materials that boost the performance of quantum computers.

Research to develop new or better materials typically involves investigating properties that can be reliably measured with existing lab equipment, but this represents just a fraction of the properties that scientists could potentially probe in principle. Some properties remain effectively “invisible” because they are too difficult to capture directly with existing methods.

Take electron-phonon interaction — this property plays a critical role in a material’s electrical, thermal, optical, and superconducting properties, but directly capturing it using existing techniques is notoriously challenging.

Now, MIT researchers have proposed a theoretically justified approach that could turn this challenge into an opportunity. Their method reinterprets neutron scattering, an often-overlooked interference effect as a potential direct probe of electron-phonon coupling strength.

The procedure creates two interaction effects in the material. The researchers show that, by deliberately designing their experiment to leverage the interference between the two interactions, they can capture the strength of a material’s electron-phonon interaction.

The researchers’ theory-informed methodology could be used to shape the design of future experiments, opening the door to measuring new quantities that were previously out of reach.

“Rather than discovering new spectroscopy techniques by pure accident, we can use theory to justify and inform the design of our experiments and our physical equipment,” says Mingda Li, the Class of 1947 Career Development Professor and an associate professor of nuclear science and engineering, and senior author of a paper on this experimental method.

Li is joined on the paper by co-lead authors Chuliang Fu, an MIT postdoc; Phum Siriviboon and Artittaya Boonkird, both MIT graduate students; as well as others at MIT, the National Institute of Standards and Technology, the University of California at Riverside, Michigan State University, and Oak Ridge National Laboratory. The research appears this week in Materials Today Physics.

Investigating interference

Neutron scattering is a powerful measurement technique that involves aiming a beam of neutrons at a material and studying how the neutrons are scattered after they strike it. The method is ideal for measuring a material’s atomic structure and magnetic properties.

When neutrons collide with the material sample, they interact with it through two different mechanisms, creating a nuclear interaction and a magnetic interaction. These interactions can interfere with each other.

“The scientific community has known about this interference effect for a long time, but researchers tend to view it as a complication that can obscure measurement signals. So it hasn’t received much focused attention,” Fu says.

The team and their collaborators took a conceptual “leap of faith” and decided to explore this oft-overlooked interference effect more deeply.

They flipped the traditional materials research approach on its head by starting with a multifaceted theoretical analysis. They explored what happens inside a material when the nuclear interaction and magnetic interaction interfere with each other.

Their analysis revealed that this interference pattern is directly proportional to the strength of the material’s electron-phonon interaction.

“This makes the interference effect a probe we can use to detect this interaction,” explains Siriviboon.

Electron-phonon interactions play a role in a wide range of material properties. They affect how heat flows through a material, impact a material’s ability to absorb and emit light, and can even lead to superconductivity.

But the complexity of these interactions makes them hard to directly measure using existing experimental techniques. Instead, researchers often rely on less precise, indirect methods to capture electron-phonon interactions.

However, leveraging this interference effect enables direct measurement of the electron-phonon interaction, a major advantage over other approaches.

“Being able to directly measure the electron-phonon interaction opens the door to many new possibilities,” says Boonkird.

Rethinking materials research

Based on their theoretical insights, the researchers designed an experimental setup to demonstrate their approach.

Since the available equipment wasn’t powerful enough for this type of neutron scattering experiment, they were only able to capture a weak electron-phonon interaction signal — but the results were clear enough to support their theory.

“These results justify the need for a new facility where the equipment might be 100 to 1,000 times more powerful, enabling scientists to clearly resolve the signal and measure the interaction,” adds Landry.

With improved neutron scattering facilities, like those proposed for the upcoming Second Target Station at Oak Ridge National Laboratory, this experimental method could be an effective technique for measuring many crucial material properties.

For instance, by helping scientists identify and harness better semiconductors, this approach could enable more energy-efficient appliances, faster wireless communication devices, and more reliable medical equipment like pacemakers and MRI scanners.   

Ultimately, the team sees this work as a broader message about the need to rethink the materials research process.

“Using theoretical insights to design experimental setups in advance can help us redefine the properties we can measure,” Fu says.

To that end, the team and their collaborators are currently exploring other types of interactions they could leverage to investigate additional material properties.

“This is a very interesting paper,” says Jon Taylor, director of the neutron scattering division at Oak Ridge National Laboratory, who was not involved with this research. “It would be interesting to have a neutron scattering method that is directly sensitive to charge lattice interactions or more generally electronic effects that were not just magnetic moments. It seems that such an effect is expectedly rather small, so facilities like STS could really help develop that fundamental understanding of the interaction and also leverage such effects routinely for research.”

This work is funded, in part, by the U.S. Department of Energy and the National Science Foundation.

Professor Emeritus Keith Johnson, pioneering theorist in materials science and independent filmmaker, dies at 89

Wed, 07/23/2025 - 4:45pm

MIT Professor Emeritus Keith H. Johnson, a quantum physicist who pioneered the use of theoretical methods in materials science and later applied his expertise to independent filmmaking, died in June in Cambridge, Massachusetts. He was 89.

A professor in MIT’s Department of Materials Science and Engineering (DMSE), Johnson used first principles to understand how electrons behave in materials — that is, he turned to fundamental laws of nature to calculate their behavior, rather than relying solely on experimental data. This approach gave scientists deeper insight into materials before they were made in a lab — helping lay the groundwork for today’s computer-driven methods of materials discovery.

DMSE Professor Harry Tuller, who collaborated with Johnson in the early 1980s, notes that while first-principles calculations are now commonplace, they were unusual at the time.

“Solid-state physicists were largely focused on modeling the electronic structure of materials like semiconductors and metals using extended wave functions,” Tuller says, referring to mathematical descriptions of electron behavior in crystals — a much quicker method. “Keith was among the minority that took a more localized chemical approach.”

That localized approach allowed Johnson to better examine materials with tiny imperfections called defects, such as in zinc oxide. His methods advanced the understanding of materials used in devices like gas sensors and water-splitting systems for hydrogen fuel. It also gave him deeper insight into complex systems such as superconductors — materials that conduct electricity without resistance — and molecular materials like “buckyballs.”

Johnson’s curiosity took creative form in 2001’s “Breaking Symmetry,” a sci-fi thriller he wrote, produced, and directed. Published on YouTube in 2020, it has been viewed more than 4 million times.

Trailblazing theorist at DMSE

Born in Reading, Pennsylvania, in 1936, Johnson showed an early interest in science. “After receiving a chemistry set as a child, he built a laboratory in his parents’ basement,” says his wife, Franziska Amacher-Johnson. “His early experiments were intense — once prompting an evacuation of the house due to chemical fumes.”

He earned his undergraduate degree in physics at Princeton University and his doctorate from Temple University in 1965. He joined the MIT faculty in 1967, in what was then called the Department of Metallurgy and Materials Science, and worked there for nearly 30 years.

His early use of theory in materials science led to more trailblazing. To model the behavior of electrons in small clusters of atoms — such as material surfaces, boundaries between different materials called interfaces, and defects — Johnson used cluster molecular orbital calculations, a quantum mechanical technique that focuses on how electrons behave in tightly grouped atomic structures. These calculations offered insight into how defects and boundaries influence material performance.

“This coupled very nicely with our interests in understanding the roles of bulk defects, interface and surface energy states at grain boundaries and surfaces in metal oxides in impacting their performance in various devices,” Tuller says.

In one project, Johnson and Tuller co-advised a PhD student who conducted both experimental testing of zinc oxide devices and theoretical modeling using Johnson’s methods. At the time, such close collaboration between experimentalists and theorists was rare. Their work led to a “much clearer and advanced understanding of how the nature of defect states formed at interfaces impacted their performance, long before this type of collaboration between experimentalists and theorists became what is now the norm,” Tuller said.

Johnson’s primary computational tool was yet another innovation, called the scattered wave method (also known as Xα multiple scattering). Though the technique has roots in mid-20th century quantum chemistry and condensed matter physics, Johnson was a leading figure in adapting it to materials applications.

Brian Ahern PhD ’84, one of Johnson’s former students, recalls the power of his approach. In 1988, while evaluating whether certain superconducting materials could be used in a next-generation supercomputer for the Department of Defense, Ahern interviewed leading scientists across the country. Most shared optimistic assessments — except Johnson. Drawing on deep theoretical calculations, Johnson showed that the zero-resistance conditions required for such a machine were not realistically achievable with the available materials.

“I reported Johnson’s findings, and the Pentagon program was abandoned, saving millions of dollars,” Ahern says.

From superconductors to screenplays

Johnson remained captivated by superconductors. These materials can conduct electricity without energy loss, making them crucial to technologies such as MRI machines and quantum computers. But they typically operate at cryogenic temperatures, requiring costly equipment. When scientists discovered so-called high-temperature superconductors — materials that worked at comparatively warmer, but still very cold (-300 degrees Fahrenheit), temperatures — a global race kicked off to understand their behavior and look for superconductors that could function at room temperature.

Using the theoretical tools he had earlier developed, Johnson proposed that vibrations of small molecular units were responsible for superconductivity — a departure from conventional thinking about what caused superconductivity. In a 1992 paper, he showed that the model could apply to a range of materials, including ceramics and buckminsterfullerene, nicknamed buckyballs because its molecules resemble architect Buckminster Fuller’s geodesic domes. Johnson predicted that room-temperature superconductivity was unlikely, because the materials needed to support it would be too unstable to work reliably.

That didn’t stop him from imagining scientific breakthroughs in fiction. A consulting trip to Russia after the fall of the Soviet Union sparked Johnson’s interest in screenwriting. Among his screenplays was “Breaking Symmetry,” about a young astrophysicist at a fictionalized MIT who discovers secret research on a radical new energy technology. When a Hollywood production deal fell through, Johnson decided to fund and direct the film himself — and even created its special effects.

Even after his early retirement from MIT, in 1996, Johnson continued to pursue research. In 2021, he published a paper on water nanoclusters in space and their possible role in the origins of life, suggesting that their properties could help explain cosmic phenomena. He also used his analytical tools to propose visual, water-based models for dark matter and dark energy — what he called “quintessential water.” 

In his later years, Johnson became increasingly interested in presenting scientific ideas through images and intuition rather than dense equations, believing that nature should be understandable without complex mathematics, Amacher-Johnson says. He embraced multimedia and emerging digital tools — including artificial intelligence — to share his ideas. Several of his presentations can be found on his YouTube channel.

“He never confined himself to a single field,” Amacher-Johnson explains. “Physics, chemistry, biology, cosmology — all were part of his unified vision of understanding the universe.”

In addition to Amacher-Johnson, Johnson is survived by his daughter. 

Adhesive inspired by hitchhiking sucker fish sticks to soft surfaces underwater

Wed, 07/23/2025 - 11:00am

Inspired by a hitchhiking fish that uses a specialized suction organ to latch onto sharks and other marine animals, researchers from MIT and other institutions have designed a mechanical adhesive device that can attach to soft surfaces underwater or in extreme conditions, and remain there for days or weeks.

This device, the researchers showed, can adhere to the lining of the GI tract, whose mucosal layer makes it very difficult to attach any kind of sensor or drug-delivery capsule. Using their new adhesive system, the researchers showed that they could achieve automatic self-adhesion, without motors, to deliver HIV antiviral drugs or RNA to the GI tract, and they could also deploy it as a sensor for gastroesophageal reflux disease (GERD). The device can also be attached to a swimming fish to monitor aquatic environments.

The design is based on the research team’s extensive studies of the remora’s sucker-like disc. These discs have several unique properties that allow them to adhere tightly to a variety of hosts, including sharks, marlins, and rays. However, how remoras maintain adhesion to soft, dynamically shifting surfaces remains largely unknown.

Understanding the fundamental physics and mechanics of how this part of the fish sticks to another organism helped us to establish the underpinnings of how to engineer a synthetic adhesive system,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, an associate member of the Broad Institute of MIT and Harvard, and the senior author of the study.

MIT research scientist Ziliang (Troy) Kang is the lead author of the study, which appears today in Nature. The research team also includes authors from Brigham and Women’s Hospital, the Broad Institute, and Boston College.

Inspired by nature

Most protein and RNA drugs can’t be taken orally because they will be broken down before they can be absorbed into the GI tract. To overcome that, Traverso’s lab is working on ingestible devices that can be swallowed and then gradually release their payload over days, weeks, or even longer.

One major obstacle is that the digestive tract is lined with a slippery mucosal membrane that is constantly regenerating and is difficult for any device to stick to. Furthermore, any device that manages to attach to this lining is likely to be dislodged by food or liquids moving through the tract.

To find a solution to these challenges, the MIT team looked to the remora, also known as the sucker fish, which clings to its hosts for free transportation and access to food scraps. To explore how the remora attaches itself to dynamic, soft surfaces so strongly, Traverso’s teamed up with Christopher Kenaley, an associate professor of biology at Boston College who studies remoras and other fish.

Their studies revealed that the remora’s ability to stick to its host depends on a few different features. First, the large suction disc creates adhesion through pressure-based suction, just like a plunger. Additionally, each disc is divided into individual small adhesive compartments by rows of plates called lamellae wrapped in soft tissue. These compartments can independently create additional suction on nonhomogeneous soft surfaces.

There are nine species of remora, and in each one, these rows of lamellae are aligned a little bit differently — some are exclusively parallel, while others form patterns with rows tilted at different angles. These differences, the researchers found, could be the key to elucidating each species’ evolutionary adaptation to its host.

Remora albescens, a unique species that exhibits mucoadhesion in the oral cavity of rays, inspired the team to develop devices with enhanced adhesion to soft surfaces with its unparallel, highly tilted lamellae orientation. Other remora species, which attach to high-speed swimmers such as marlins and swordfish, tend to have highly parallel orientations, which help the hitchhikers slide without losing adhesion as they are rapidly dragged through the water. Still other species, which have a mix of parallel and angled rows, can attach to a variety of hosts.

Tiny spines that protrude from the lamellae help to achieve additional adhesion by interlocking with the host tissue. These spines, also called spinules, are several hundred microns long and grasp onto the tissue with minimal invasiveness.

“If the compartment suction is subjected to a shear force, the friction enabled by the mechanical interlocking of the spinules can help to maintain the suction,” Kang says.

Watery environments

By mimicking these anatomical features, the MIT team was able to create a device with similarly strong adhesion for a variety of applications in underwater environments.

The researchers used silicone rubber and temperature-responsive smart materials to create their adhesive device, which they call MUSAS (for “mechanical underwater soft adhesion system”). The fully passive, disc-shaped device contains rows of lamellae similar to those of the remora, and can self-adhere to the mucosal lining, leveraging GI contractions. The researchers found that for their purposes, a pattern of tilted rows was the most effective.

Within the lamellae are tiny microneedle-like structures that mimic the spinules seen in the remora. These tiny spines are made of a shape memory alloy that is activated when exposed to body temperatures, allowing the spines to interlock with each other and grasp onto the tissue surface.

The researchers showed that this device could attach to a variety of soft surfaces, even in wet or highly acidic conditions, including pig stomach tissue, nitrile gloves, and a tilapia swimming in a fish tank. Then, they tested the device for several different applications, including aquatic environmental monitoring. After adding a temperature sensor to the device, the researchers showed that they could attach the device to a fish and accurately measure water temperature as the fish swam at high speed.

To demonstrate medical applications, the researchers incorporated an impedance sensor into the device and showed that it could adhere to the esophagus in an animal model, which allowed them to monitor reflux of gastric fluid. This could offer an alternative to current sensors for GERD, which are delivered by a tube placed through the nose or mouth and pinned to the lower part of the esophagus.

They also showed that the device could be used for sustained release of two different types of therapeutics, in animal tests. First, they showed that they could integrate an HIV drug called cabotegravir into the materials that make up the device (polycaprolactone and silicone). Once adhered to the lining of the stomach, the drug gradually diffused out of the device, over a period of one week.

Cabotegravir is one of the drugs used for HIV PrEP — pre-exposure prophylaxis — as well as treatment of HIV. These treatments are usually given either as a daily pill or an injection administered every one to two months.

The researchers also created a version of the device that could be used for delivery of larger molecules such as RNA. For this kind of delivery, the researchers incorporated RNA into the microneedles of the lamellae, which could then inject them into the lining of the stomach. Using RNA encoding the gene for luciferase, a protein that emits light, the researchers showed that they could successfully deliver the gene to cells of the cheek or the esophagus.

The researchers now plan to adapt the device for delivering other types of drugs, as well as vaccines. Another possible application is using the devices for electrical stimulation, which Traverso’s lab has previously shown can activate hormones that regulate appetite.

The research was funded, in part, by the Gates Foundation, MIT’s Department of Mechanical Engineering, Brigham and Women’s Hospital, and the Advanced Research Projects Agency for Health.

Pages