MIT Latest News

Subscribe to MIT Latest News feed
MIT News is dedicated to communicating to the media and the public the news and achievements of the students, faculty, staff and the greater MIT community.
Updated: 12 hours 23 min ago

Reflecting on COP28 — and humanity’s progress toward meeting global climate goals

Tue, 02/06/2024 - 5:10pm

With 85,000 delegates, the 2023 United Nations climate change conference, known as COP28, was the largest U.N. climate conference in history. It was held at the end of the hottest year in recorded history. And after 12 days of negotiations, from Nov. 30 to Dec. 12, it produced a decision that included, for the first time, language calling for “transitioning away from fossil fuels,” though it stopped short of calling for their complete phase-out.

U.N. Climate Change Executive Secretary Simon Stiell said the outcome in Dubai, United Arab Emirates, COP28’s host city, signaled “the beginning of the end” of the fossil fuel era. 

COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held this year for the 28th time. Through the negotiations — and the immense conference and expo that takes place alongside them — a delegation of faculty, students, and staff from MIT was in Dubai to observe the negotiations, present new climate technologies, speak on panels, network, and conduct research.

On Jan. 17, the MIT Center for International Studies (CIS) hosted a panel discussion with MIT delegates who shared their reflections on the experience. Asking what’s going on at COP is “like saying, ‘What’s going on in the city of Boston today?’” quipped Evan Lieberman, the Total Professor of Political Science and Contemporary Africa, director of CIS, and faculty director of MIT International Science and Technology Initiatives (MISTI). “The value added that all of us can provide for the MIT community is [to share] what we saw firsthand and how we experienced it.” 

Phase-out, phase down, transition away?

In the first week of COP28, over 100 countries issued a joint statement that included a call for “the global phase out of unabated fossil fuels.” The question of whether the COP28 decision — dubbed the “UAE Consensus” — would include this phase-out language animated much of the discussion in the days and weeks leading up to COP28. 

Ultimately, the decision called for “transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner.” It also called for “accelerating efforts towards the phase down of unabated coal power,” referring to the combustion of coal without efforts to capture and store its emissions.

In Dubai to observe the negotiations, graduate student Alessandra Fabbri said she was “confronted” by the degree to which semantic differences could impose significant ramifications — for example, when negotiators referred to a “just transition,” or to “developed vs. developing nations” — particularly where evolution in recent scholarship has produced more nuanced understandings of the terms.

COP28 also marked the conclusion of the first global stocktake, a core component of the 2015 Paris Agreement. The effort every five years to assess the world’s progress in responding to climate change is intended as a basis for encouraging countries to strengthen their climate goals over time, a process often referred to as the Paris Agreement’s “ratchet mechanism.” 

The technical report of the first global stocktake, published in September 2023, found that while the world has taken actions that have reduced forecasts of future warming, they are not sufficient to meet the goals of the Paris Agreement, which aims to limit global average temperature increase to “well below” 2 degrees Celsius, while pursuing efforts to limit the increase to 1.5 degrees above pre-industrial levels.

“Despite minor, punctual advancements in climate action, parties are far from being on track to meet the long-term goals of the Paris Agreement,” said Fabbri, a graduate student in the School of Architecture and Planning and a fellow in MIT's Leventhal Center for Advanced Urbanism. Citing a number of persistent challenges, including some parties’ fears that rapid economic transition may create or exacerbate vulnerabilities, she added, “There is a noted lack of accountability among certain countries in adhering to their commitments and responsibilities under international climate agreements.” 

Climate and trade

COP28 was the first climate summit to formally acknowledge the importance of international trade by featuring an official “Trade Day” on Dec. 4. Internationally traded goods account for about a quarter of global greenhouse gas emissions, raising complex questions of accountability and concerns about offshoring of industrial manufacturing, a phenomenon known as “emissions leakage.” Addressing the nexus of climate and trade is therefore considered essential for successful decarbonization, and a growing number of countries are leveraging trade policies — such as carbon fees applied to imported goods — to secure climate benefits. 

Members of the MIT delegation participated in several related activities, sharing research and informing decision-makers. Catherine Wolfram, professor of applied economics in the MIT Sloan School of Management, and Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research (CEEPR), presented options for international cooperation on such trade policies at side events, including ones hosted by the World Trade Organization and European Parliament. 

“While COPs are often criticized for highlighting statements that don’t have any bite, they are also tremendous opportunities to get people from around the world who care about climate and think deeply about these issues in one place,” said Wolfram.

Climate and health

For the first time in the conference’s nearly 30-year history, COP28 included a thematic “Health Day” that featured talks on the relationship between climate and health. Researchers from MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) have been testing policy solutions in this area for years through research funds such as the King Climate Action Initiative (K-CAI). 

“An important but often-neglected area where climate action can lead to improved health is combating air pollution,” said Andre Zollinger, K-CAI’s senior policy manager. “COP28's announcement on reducing methane leaks is an important step because action in this area could translate to relatively quick, cost-effective ways to curb climate change while improving air quality, especially for people living near these industrial sites.” K-CAI has an ongoing project in Colorado investigating the use of machine learning to predict leaks and improve the framework for regulating industrial methane emissions, Zollinger noted.

This was J-PAL’s third time at COP, which Zollinger said typically presented an opportunity for researchers to share new findings and analysis with government partners, nongovernmental organizations, and companies. This year, he said, “We have [also] been working with negotiators in the [Middle East and North Africa] region in the months preceding COP to plug them into the latest evidence on water conservation, on energy access, on different challenging areas of adaptation that could be useful for them during the conference.”

Sharing knowledge, learning from others

MIT student Runako Gentles described COP28 as a “springboard” to greater impact. A senior from Jamaica studying civil and environmental engineering, Gentles said it was exciting to introduce himself as an MIT undergraduate to U.N. employees and Jamaican delegates in Dubai. “There’s a lot of talk on mitigation and cutting carbon emissions, but there needs to be much more going into climate adaptation, especially for small-island developing states like those in the Caribbean,” he said. “One of the things I can do, while I still try to finish my degree, is communicate — get the story out there to raise awareness.”

At an official side event at COP28 hosted by MIT, Pennsylvania State University, and the American Geophysical Union, Maria T. Zuber, MIT’s vice president for research, stressed the importance of opportunities to share knowledge and learn from people around the world.

“The reason this two-way learning is so important for us is simple: The ideas we come up with in a university setting, whether they’re technological or policy or any other kind of innovations — they only matter in the practical world if they can be put to good use and scaled up,” said Zuber. “And the only way we can know that our work has practical relevance for addressing climate is by working hand-in-hand with communities, industries, governments, and others.”

Marcela Angel, research program director at the Environmental Solutions Initiative, and Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, also spoke at the event, which was moderated by Bethany Patten, director of policy and engagement for sustainability at the MIT Sloan School of Management. 

Six MIT students selected as spring 2024 MIT-Pillar AI Collective Fellows

Tue, 02/06/2024 - 4:50pm

The MIT-Pillar AI Collective has announced six fellows for the spring 2024 semester. With support from the program, the graduate students, who are in their final year of a master’s or PhD program, will conduct research in the areas of AI, machine learning, and data science with the aim of commercializing their innovations.

Launched by MIT’s School of Engineering and Pillar VC in 2022, the MIT-Pillar AI Collective supports faculty, postdocs, and students conducting research on AI, machine learning, and data science. Supported by a gift from Pillar VC and administered by the MIT Deshpande Center for Technological Innovation, the mission of the program is to advance research toward commercialization.

The spring 2024 MIT-Pillar AI Collective Fellows are:

Yasmeen AlFaraj

Yasmeen AlFaraj is a PhD candidate in chemistry whose interest is in the application of data science and machine learning to soft materials design to enable next-generation, sustainable plastics, rubber, and composite materials. More specifically, she is applying machine learning to the design of novel molecular additives to enable the low-cost manufacturing of chemically deconstructable thermosets and composites. AlFaraj’s work has led to the discovery of scalable, translatable new materials that could address thermoset plastic waste. As a Pillar Fellow, she will pursue bringing this technology to market, initially focusing on wind turbine blade manufacturing and conformal coatings. Through the Deshpande Center for Technological Innovation, AlFaraj serves as a lead for a team developing a spinout focused on recyclable versions of existing high-performance thermosets by incorporating small quantities of a degradable co-monomer. In addition, she participated in the National Science Foundation Innovation Corps program and recently graduated from the Clean Tech Open, where she focused on enhancing her business plan, analyzing potential markets, ensuring a complete IP portfolio, and connecting with potential funders. AlFaraj earned a BS in chemistry from University of California at Berkeley.

Ruben Castro Ornelas

Ruben Castro Ornelas is a PhD student in mechanical engineering who is passionate about the future of multipurpose robots and designing the hardware to use them with AI control solutions. Combining his expertise in programming, embedded systems, machine design, reinforcement learning, and AI, he designed a dexterous robotic hand capable of carrying out useful everyday tasks without sacrificing size, durability, complexity, or simulatability. Ornelas’s innovative design holds significant commercial potential in domestic, industrial, and health-care applications because it could be adapted to hold everything from kitchenware to delicate objects. As a Pillar Fellow, he will focus on identifying potential commercial markets, determining the optimal approach for business-to-business sales, and identifying critical advisors. Ornelas served as co-director of StartLabs, an undergraduate entrepreneurship club at MIT, where he earned an BS in mechanical engineering.

Keeley Erhardt

Keeley Erhardt is a PhD candidate in media arts and sciences whose research interests lie in the transformative potential of AI in network analysis, particularly for entity correlation and hidden link detection within and across domains. She has designed machine learning algorithms to identify and track temporal correlations and hidden signals in large-scale networks, uncovering online influence campaigns originating from multiple countries. She has similarly demonstrated the use of graph neural networks to identify coordinated cryptocurrency accounts by analyzing financial time series data and transaction dynamics. As a Pillar Fellow, Erhardt will pursue the potential commercial applications of her work, such as detecting fraud, propaganda, money laundering, and other covert activity in the finance, energy, and national security sectors. She has had internships at Google, Facebook, and Apple and held software engineering roles at multiple tech unicorns. Erhardt earned an MEng in electrical engineering and computer science and a BS in computer science, both from MIT.

Vineet Jagadeesan Nair

Vineet Jagadeesan Nair is a PhD candidate in mechanical engineering whose research focuses on modeling power grids and designing electricity markets to integrate renewables, batteries, and electric vehicles. He is broadly interested in developing computational tools to tackle climate change. As a Pillar Fellow, Nair will explore the application of machine learning and data science to power systems. Specifically, he will experiment with approaches to improve the accuracy of forecasting electricity demand and supply with high spatial-temporal resolution. In collaboration with Project Tapestry @ Google X, he is also working on fusing physics-informed machine learning with conventional numerical methods to increase the speed and accuracy of high-fidelity simulations. Nair’s work could help realize future grids with high penetrations of renewables and other clean, distributed energy resources. Outside academics, Nair is active in entrepreneurship, most recently helping to organize the 2023 MIT Global Startup Workshop in Greece. He earned an MS in computational science and engineering from MIT, an MPhil in energy technologies from Cambridge University as a Gates Scholar, and a BS in mechanical engineering and a BA in economics from University of California at Berkeley.

Mahdi Ramadan

Mahdi Ramadan is a PhD candidate in brain and cognitive sciences whose research interests lie at the intersection of cognitive science, computational modeling, and neural technologies. His work uses novel unsupervised methods for learning and generating interpretable representations of neural dynamics, capitalizing on recent advances in AI, specifically contrastive and geometric deep learning techniques capable of uncovering the latent dynamics underlying neural processes with high fidelity. As a Pillar Fellow, he will leverage these methods to gain a better understanding of dynamical models of muscle signals for generative motor control. By supplementing current spinal prosthetics with generative AI motor models that can streamline, speed up, and correct limb muscle activations in real time, as well as potentially using multimodal vision-language models to infer the patients’ high-level intentions, Ramadan aspires to build truly scalable, accessible, and capable commercial neuroprosthetics. Ramadan’s entrepreneurial experience includes being the co-founder of UltraNeuro, a neurotechnology startup, and co-founder of Presizely, a computer vision startup. He earned a BS in neurobiology from University of Washington.

Rui (Raymond) Zhou

Rui (Raymond) Zhou is a PhD candidate in mechanical engineering whose research focuses on multimodal AI for engineering design. As a Pillar Fellow, he will advance models that could enable designers to translate information in any modality or combination of modalities into comprehensive 2D and 3D designs, including parametric data, component visuals, assembly graphs, and sketches. These models could also optimize existing human designs to accomplish goals such as improving ergonomics or reducing drag coefficient. Ultimately, Zhou aims to translate his work into a software-as-a-service platform that redefines product design across various sectors, from automotive to consumer electronics. His efforts have the potential to not only accelerate the design process but also reduce costs, opening the door to unprecedented levels of customization, idea generation, and rapid prototyping. Beyond his academic pursuits, Zhou founded UrsaTech, a startup that integrates AI into education and engineering design. He earned a BS in electrical engineering and computer sciences from University of California at Berkeley.

MADMEC winner creates “temporary tattoos” for T-shirts

Tue, 02/06/2024 - 10:00am

Have you ever gotten a free T-shirt at an event that you never wear? What about a music or sports-themed shirt you wear to one event and then lose interest in entirely? Such one-off T-shirts — and the waste and pollution associated with them — are an unfortunately common part of our society.

But what if you could change the designs on shirts after each use? The winners of this year's MADMEC competition developed biodegradable "temporary tattoos" for T-shirts to make one-wear clothing more sustainable.

Members of the winning team, called Me-Shirts, got their inspiration from the MADMEC event itself, which ordinarily makes a different T-shirt each year.

“If you think about all the textile waste that’s produced for all these shirts, it’s insane,” team member and PhD candidate Isabella Caruso said in the winning presentation. “The main markets we are trying to address are for one-time T-shirts and custom T-shirts.”

The problem is a big one. According to the team, the custom T-shirt market is a $4.3 billion industry. That doesn’t include trends like fast fashion that contribute to the 17 million tons of textile waste produced each year.

“Our proposed solution is a temporary shirt tattoo made from biodegradable, nontoxic materials,” Caruso explained. “We wanted designs that are fully removable through washing, so that you can wear your T-shirt for your one-time event and then get a nice white T-shirt back afterward.”

The team’s scalable design process mixes three simple ingredients: potato starch, glycerin, and water. The design can be imprinted on the shirt temporarily through ironing.

The Me-Shirt team, which earned $10,000 with the win, plans to continue exploring material combinations to make the design more flexible and easier for people to apply at home. Future iterations could allow users to decide if they want the design to stay on the shirt during washes based on the settings of the washing machine.

Hosted by MIT’s Department of Materials Science and Engineering (DMSE), the competition was the culmination of team projects that began in the fall and included a series of design challenges throughout the semester. Each team received guidance, access to equipment and labs, and up to $1,000 in funding to build and test their prototypes.

“The main goal is that they gained some confidence in their ability to design and build devices and platforms that are different from their normal experiences,” Mike Tarkanian, a senior lecturer in DMSE and coordinator of MADMEC, said at the event. “If it’s a departure from their normal research and coursework activities that’s a win, I think, to make them better engineers.”

The second-place, $6,000 prize went to Alkalyne, which is creating a carbon-neutral polymer for petrochemical production. The company is developing approaches for using electricity and inorganic carbon to generate a high-energy hydrocarbon precursor. If developed using renewable energy, the approach could be used to achieve carbon negative petrochemical production.

“A lot of our research, and a lot of the research around MIT in general, has to do with sustainability, so we wanted to try an angle that we think looks promising but doesn’t seem to be investigated enough,” PhD candidate Christopher Mallia explained.

The third-place prize went to Microbeco, which is exploring the use of microbial fuel cells for continuous water quality monitoring. Microbes have been proposed as a way to detect and measure contaminants in water for decades, but the team believes the varying responses of microbes to different contaminants has limited the effectiveness of the approach.

To overcome that problem, the team is working to isolate microbial strains that respond more regularly to specific contaminants.

Overall, Tarkanian believes this year’s program was a success not only because of the final results presented at the competition, but because of the experience the students got along the way using equipment like laser cutters, 3D printers, and soldering irons. Many participants said they had never used that type of equipment before. They also said by working to build physical prototypes, the program helped make their coursework come to life.

“It was a chance to try something new by applying my skills to a different environment,” PhD candidate Zachary Adams said. “I can see a lot of the concepts I learn in my classes through this work.”

Remembering MIT Copytech Director Casey Harrington

Tue, 02/06/2024 - 9:00am

Casey Harrington, who led MIT Copytech’s recovery from pandemic-era disruptions and built close friendships across campus, passed away unexpectedly on Jan. 13. He was 49.

Copytech’s director since 2022, Harrington modernized the department’s equipment and services to improve its financial outlook, and led his staff with a personal touch.

“Casey was beloved by our team,” says Alfred Ironside, MIT’s vice president for communications. “He was a great manager, had a vision for the future, spent time with his co-workers, cared for them, and loved MIT. He turned around Copytech’s fortunes, too, setting it on an upward trajectory that reflected his wonderful abilities as a leader. His loss is enormous — for his wife, his children, his family, and for us.”

Although Harrington’s time at MIT was brief, he left a lasting impression on his team at Copytech and the people he worked with every day.

“Casey was a great leader, with a rare combination of vision, approachability, and genuine care and appreciation for our team,” Financial Officer Suha Bekdash says. “Since he joined two years ago, he made an immediate impact steering Copytech toward a more successful future after the pandemic.”

For those who knew Harrington well, he will be remembered for his numerous “Casey-isms,” which included “Be grateful” and “Do the next right thing.”

“I want his legacy to be, ‘Do the next right thing,’” his wife Marilyn Harrington says. “Coming to MIT was the next right thing for our family, and he always did the next right thing for our family. There was no way for us to predict this tragedy. He did the next right thing for his staff and for MIT leadership. He always did his best. He left this world very loved, very respected, and he left a hole that will never be filled.”

Leading Copytech by building friendships

Harrington came to MIT with big shoes to fill. His predecessor, Steven Dimond, had worked at Copytech for 50 years. On top of that, Copytech was emerging from a pandemic that caused business to stall as people left campus and more events went online.

“That had been an extremely difficult number of years for Copytech, both financially and also just for the morale of people,” says Danyel Barnard, MIT's executive director of digital, brand, and internal communications. “He took a job that was a challenge. We needed someone who could come in and help turn things around. He was really excited about the opportunity, and about being at MIT, and he was eager to lead the organization through those challenges.”

Harrington came to MIT with deep expertise about the print industry. Prior to MIT, he had worked at large private companies, global health care groups, and Vanderbilt University.

“He could take the transcript of a book and say, ‘It needs to be this size book print with this size paper and this many pages,’” Marilyn Harrington recalls.

At MIT, he hit the ground running by working out new service contracts and pitching ideas for new equipment, including a new, large-format printing machine.

“In his two years here, he did amazing things with the operation,” says Barnard. “He led a big turnaround financially, a lot of which I credit to his management and leadership. He had great foresight and truly exceeded expectations."

Most importantly, Harrington established personal connections with the Copytech team and his colleagues across the Institute.

“Casey was a great leader,” Administrative Assistant Taj Dickson says. “He loved Copytech and he loved MIT. When he came, he fit right in with us. People have been in Copytech for so long, and when they leave there’s always trepidation that the new person is not going to understand how to deal with the department. But he came in and figured it out, and the transition was really smooth because of his emotional intelligence as a leader. I think that was one of his hallmarks: He was a very emotionally intelligent leader.”

It was perhaps an unlikely match. Harrington’s southern accent was a stark contrast with many of the Bostonians in Copytech. But their different backgrounds served as a conversation piece more than a point of difference.

“The staff universally loved him,” Barnard says. “He was a perfect fit and a perfect leader for them. He really cared about them, and that is so important at Copytech, where they consider themselves a family.”

His wife describes MIT as Harrington’s “dream job” and says he was grateful to Copytech’s staff for embracing him.

“He left MIT in a better place than he found it because of the support he got from the team and from MIT leadership,” she says.

A strong leader

Harrington was born in Nashville and was a proud graduate of the University of Tennessee at Knoxville. He was also deeply devoted to his family. He met Marilyn when he was 13, and their friendship blossomed into a 27-year marriage.

Casey moved to Boston while his family figured out where their youngest child would attend high school, but they made a point to see each other as much as possible — Marilyn estimates they spent well over 400 days together in his first two years living in Boston.

“Once, I texted him that I wasn’t doing well and I needed to see him, and he was on my doorstep four hours later,” Marilyn recalls. “He didn’t even have a bag, only his laptop. That was the kind of person he was.”

“You could really have honest conversations with Casey,” Dickson says. “He would have no problem talking about his experiences, good and bad, and it was up to you to find the lesson in those stories.”

When news of Harrington’s passing got around MIT, Barnard heard from people in disparate departments who she didn’t even realize knew Harrington explaining they had become friends.

“He found ways to connect with people,” Barnard says. “I was amazed by his reach.”

In honor of Harrington and in a nod to his love for University of Tennessee football, the Copytech team wore orange shirts and blue jeans to work on Jan. 29. They say they’ll continue to honor Harrington through their work.

“He was a strong leader who was full of life, and he still had so much to offer Copytech,” Dickson says. “His ability to communicate, his unique sense of humor, and his love for our department were just a few of the highlights that made Casey shine.”

MIT-led team receives funding to pursue new treatments for metabolic disease

Mon, 02/05/2024 - 3:30pm

A team of MIT researchers will lead a $65.67 million effort, awarded by the U.S. Advanced Research Projects Agency for Health (ARPA-H), to develop ingestible devices that may one day be used to treat diabetes, obesity, and other conditions through oral delivery of mRNA. Such devices could potentially be deployed for needle-free delivery of mRNA vaccines as well.

The five-year project also aims to develop electroceuticals, a new form of ingestible therapies based on electrical stimulation of the body’s own hormones and neural signaling. If successful, this approach could lead to new treatments for a variety of metabolic disorders.

“We know that the oral route is generally the preferred route of administration for both patients and health care providers,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT and a gastroenterologist at Brigham and Women’s Hospital. “Our primary focus is on disorders of metabolism because they affect a lot of people, but the platforms we’re developing could be applied very broadly.”

Traverso is the principal investigator for the project, which also includes Robert Langer, MIT Institute Professor, and Anantha Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. As part of the project, the MIT team will collaborate with investigators from Brigham and Women’s Hospital, New York University, and the University of Colorado School of Medicine.

Over the past several years, Traverso’s and Langer’s labs have designed many types of ingestible devices that can deliver drugs to the GI tract. This approach could be especially useful for protein drugs and nucleic acids, which typically can’t be given orally because they break down in the acidic environment of the digestive tract.

Messenger RNA has already proven useful as a vaccine, directing cells to produce fragments of viral proteins that trigger an immune response. Delivering mRNA to cells also holds potential to stimulate production of therapeutic molecules to treat a variety of diseases. In this project, the researchers plan to focus on metabolic diseases such as diabetes.

“What mRNA can do is enable the potential for dosing therapies that are very difficult to dose today, or provide longer-term coverage by essentially creating an internal factory that produces a therapy for a prolonged period,” Traverso says.

In the mRNA portion of the project, the research team intends to identify lipid and polymer nanoparticle formulations that can most effectively deliver mRNA to cells, using machine learning to help identify the best candidates. They will also develop and test ingestible devices to carry the mRNA-nanoparticle payload, with the goal of running a clinical trial in the final year of the five-year project.

The work will build on research that Traverso’s lab has already begun. In 2022, Traverso and his colleagues reported that they could deliver mRNA in capsules that inject mRNA-nanoparticle complexes into the lining of the stomach.

The other branch of the project will focus on ingestible devices that can deliver a small electrical current to the lining of the stomach. In a study published last year, Traverso’s lab demonstrated this approach for the first time, using a capsule coated with electrodes that apply an electrical current to cells of the stomach. In animal studies, they found that this stimulation boosted production of ghrelin, a hormone that stimulates appetite.

Traverso envisions that this type of treatment could potentially replace or complement some of the existing drugs used to prevent nausea and stimulate appetite in people with anorexia or cachexia (loss of body mass that can occur in patients with cancer or other chronic diseases). The researchers also hope to develop ways to stimulate production of GLP-1, a hormone that is used to help manage diabetes and promote weight loss.

“What this approach starts to do is potentially maximize our ability to treat disease without administering a new drug, but instead by simply modulating the body’s own systems through electrical stimulation,” Traverso says.

At MIT, Langer will help to develop nanoparticles for mRNA delivery, and Chandrakasan will work on ways to reduce energy consumption and miniaturize the electronic functions of the capsules, including secure communication, stimulation, and power generation.

The Brigham and Women’s Hospital’s portion of the project will be co-led by Traverso, Ameya Kirtane, Jason Li, and Peter Chai, who will amplify efforts on the formulation and stabilization of the mRNA nanoparticles, engineering of the ingestible devices, and running of clinical trials. At NYU, the effort will be led by assistant professor of bioengineering Khalil Ramadi SM ’16, PhD ’19, focusing on biological characterization of the effects of electrical stimulation. Researchers at the University of Colorado, led by Matthew Wynia and Eric G. Campbell of the CU Center for Bioethics and Humanities, will focus on exploring the ethical dimensions and public perceptions of these types of biomedical interventions.

“We felt like we had an opportunity here not only to do fundamental engineering science and early-stage clinical trials, but also to start to understand the data behind some of the ethical implications and public perceptions of these technologies through this broad collaboration,” Traverso says.

The project described here is supported by ARPA-H under award number D24AC00040-00. The content of this announcement does not necessarily represent the official views of the Advanced Research Projects Agency for Health.

MIT researchers map the energy transition’s effects on jobs

Mon, 02/05/2024 - 3:00pm

A new analysis by MIT researchers shows the places in the U.S. where jobs are most linked to fossil fuels. The research could help policymakers better identify and support areas affected over time by a switch to renewable energy.

While many of the places most potentially affected have intensive drilling and mining operations, the study also measures how areas reliant on other industries, such as heavy manufacturing, could experience changes. The research examines the entire U.S. on a county-by-county level.

“Our result is that you see a higher carbon footprint for jobs in places that drill for oil, mine for coal, and drill for natural gas, which is evident in our maps,” says Christopher Knittel, an economist at the MIT Sloan School of Management and co-author of a new paper detailing the findings. “But you also see high carbon footprints in areas where we do a lot of manufacturing, which is more likely to be missed by policymakers when examining how the transition to a zero-carbon economy will affect jobs.”

So, while certain U.S. areas known for fossil-fuel production would certainly be affected — including west Texas, the Powder River Basin of Montana and Wyoming, parts of Appalachia, and more — a variety of industrial areas in the Great Plains and Midwest could see employment evolve as well.

The paper, “Assessing the distribution of employment vulnerability to the energy transition using employment carbon footprints,” is published this week in Proceedings of the National Academy of Sciences. The authors are Kailin Graham, a master’s student in MIT’s Technology and Policy Program and graduate research assistant at MIT’s Center for Energy and Environmental Policy Research; and Knittel, who is the George P. Shultz Professor at MIT Sloan.

“Our results are unique in that we cover close to the entire U.S. economy and consider the impacts on places that produce fossil fuels but also on places that consume a lot of coal, oil, or natural gas for energy,” says Graham. “This approach gives us a much more complete picture of where communities might be affected and how support should be targeted.”

Adjusting the targets

The current study stems from prior research Knittel has conducted, measuring carbon footprints at the household level across the U.S. The new project takes a conceptually related approach, but for jobs in a given county. To conduct the study, the researchers used several data sources measuring energy consumption by businesses, as well as detailed employment data from the U.S. Census Bureau.

The study takes advantage of changes in energy supply and demand over time to estimate how strongly a full range of jobs, not just those in energy production, are linked to use of fossil fuels. The sectors accounted for in the study comprise 86 percent of U.S. employment, and 94 percent of U.S. emissions apart from the transportation sector.

The Inflation Reduction Act, passed by Congress and signed into law by President Joe Biden in August 2022, is the first federal legislation seeking to provide an economic buffer for places affected by the transition away from fossil fuels. The act provides expanded tax credits for economic projects located in “energy community” areas — defined largely as places with high fossil-fuel industry employment or tax revenue and with high unemployment. Areas with recently closed or downsized coal mines or power plants also qualify.

Graham and Knittel measured the “employment carbon footprint” (ECF) of each county in the U.S., producing new results. Out of more than 3,000 counties in the U.S., the researchers found that 124 are at the 90th percentile or above in ECF terms, while not qualifying for Inflation Reduction Act assistance. Another 79 counties are eligible for Inflation Reduction Act assistance, while being in the bottom 20 percent nationally in ECF terms.

Those may not seem like colossal differences, but the findings identify real communities potentially being left out of federal policy, and highlight the need for new targeting of such programs. The research by Graham and Knittel offers a precise way to assess the industrial composition of U.S. counties, potentially helping to target economic assistance programs.

“The impact on jobs of the energy transition is not just going to be where oil and natural gas are drilled, it’s going to be all the way up and down the value chain of things we make in the U.S.,” Knittel says. “That’s a more extensive, but still focused, problem.”

Graham adds: “It’s important that policymakers understand these economy-wide employment impacts. Our aim in providing these data is to help policymakers incorporate these considerations into future policies like the Inflation Reduction Act.”

Adapting policy

Graham and Knittel are still evaluating what the best policy measures might be to help places in the U.S. adapt to a move away from fossil fuels.

“What we haven’t necessarily closed the loop on is the right way to build a policy that takes account of these factors,” Knittel says. “The Inflation Reduction Act is the first policy to think about a [fair] energy transition because it has these subsidies for energy-dependent counties.” But given enough political backing, there may be room for additional policy measures in this area.

One thing clearly showing through in the study’s data is that many U.S. counties are in a variety of situations, so there may be no one-size-fits-all approach to encouraging economic growth while making a switch to clean energy. What suits west Texas or Wyoming best may not work for more manufacturing-based local economies. And even among primary energy-production areas, there may be distinctions, among those drilling for oil or natural gas and those producing coal, based on the particular economics of those fuels. The study includes in-depth data about each county, characterizing its industrial portfolio, which may help tailor approaches to a range of economic situations.

“The next step is using this data more specifically to design policies to protect these communities,” Knittel says.

How symmetry can come to the aid of machine learning

Mon, 02/05/2024 - 10:10am

Behrooz Tahmasebi — an MIT PhD student in the Department of Electrical Engineering and Computer Science (EECS) and an affiliate of the Computer Science and Artificial Intelligence Laboratory (CSAIL) — was taking a mathematics course on differential equations in late 2021 when a glimmer of inspiration struck. In that class, he learned for the first time about Weyl’s law, which had been formulated 110 years earlier by the German mathematician Hermann Weyl. Tahmasebi realized it might have some relevance to the computer science problem he was then wrestling with, even though the connection appeared — on the surface — to be thin, at best. Weyl’s law, he says, provides a formula that measures the complexity of the spectral information, or data, contained within the fundamental frequencies of a drum head or guitar string.

Tahmasebi was, at the same time, thinking about measuring the complexity of the input data to a neural network, wondering whether that complexity could be reduced by taking into account some of the symmetries inherent to the dataset. Such a reduction, in turn, could facilitate — as well as speed up — machine learning processes.

Weyl’s law, conceived about a century before the boom in machine learning, had traditionally been applied to very different physical situations — such as those concerning the vibrations of a string or the spectrum of electromagnetic (black-body) radiation given off by a heated object. Nevertheless, Tahmasebi believed that a customized version of that law might help with the machine learning problem he was pursuing. And if the approach panned out, the payoff could be considerable.

He spoke with his advisor, Stefanie Jegelka — an associate professor in EECS and affiliate of CSAIL and the MIT Institute for Data, Systems, and Society — who believed the idea was definitely worth looking into. As Tahmasebi saw it, Weyl’s law had to do with gauging the complexity of data, and so did this project. But Weyl’s law, in its original form, said nothing about symmetry.

He and Jegelka have now succeeded in modifying Weyl’s law so that symmetry can be factored into the assessment of a dataset’s complexity. “To the best of my knowledge,” Tahmasebi says, “this is the first time Weyl’s law has been used to determine how machine learning can be enhanced by symmetry.”

The paper he and Jegelka wrote earned a “Spotlight” designation when it was presented at the December 2023 conference on Neural Information Processing Systems — widely regarded as the world’s top conference on machine learning.

This work, comments Soledad Villar, an applied mathematician at Johns Hopkins University, “shows that models that satisfy the symmetries of the problem are not only correct but also can produce predictions with smaller errors, using a small amount of training points. [This] is especially important in scientific domains, like computational chemistry, where training data can be scarce.”

In their paper, Tahmasebi and Jegelka explored the ways in which symmetries, or so-called “invariances,” could benefit machine learning. Suppose, for example, the goal of a particular computer run is to pick out every image that contains the numeral 3. That task can be a lot easier, and go a lot quicker, if the algorithm can identify the 3 regardless of where it is placed in the box — whether it’s exactly in the center or off to the side — and whether it is pointed right-side up, upside down, or oriented at a random angle. An algorithm equipped with the latter capability can take advantage of the symmetries of translation and rotations, meaning that a 3, or any other object, is not changed in itself by altering its position or by rotating it around an arbitrary axis. It is said to be invariant to those shifts. The same logic can be applied to algorithms charged with identifying dogs or cats. A dog is a dog is a dog, one might say, irrespective of how it is embedded within an image. 

The point of the entire exercise, the authors explain, is to exploit a dataset’s intrinsic symmetries in order to reduce the complexity of machine learning tasks. That, in turn, can lead to a reduction in the amount of data needed for learning. Concretely, the new work answers the question: How many fewer data are needed to train a machine learning model if the data contain symmetries?

There are two ways of achieving a gain, or benefit, by capitalizing on the symmetries present. The first has to do with the size of the sample to be looked at. Let’s imagine that you are charged, for instance, with analyzing an image that has mirror symmetry — the right side being an exact replica, or mirror image, of the left. In that case, you don’t have to look at every pixel; you can get all the information you need from half of the image — a factor of two improvement. If, on the other hand, the image can be partitioned into 10 identical parts, you can get a factor of 10 improvement. This kind of boosting effect is linear.

To take another example, imagine you are sifting through a dataset, trying to find sequences of blocks that have seven different colors — black, blue, green, purple, red, white, and yellow. Your job becomes much easier if you don’t care about the order in which the blocks are arranged. If the order mattered, there would be 5,040 different combinations to look for. But if all you care about are sequences of blocks in which all seven colors appear, then you have reduced the number of things — or sequences — you are searching for from 5,040 to just one.

Tahmasebi and Jegelka discovered that it is possible to achieve a different kind of gain — one that is exponential — that can be reaped for symmetries that operate over many dimensions. This advantage is related to the notion that the complexity of a learning task grows exponentially with the dimensionality of the data space. Making use of a multidimensional symmetry can therefore yield a disproportionately large return. “This is a new contribution that is basically telling us that symmetries of higher dimension are more important because they can give us an exponential gain,” Tahmasebi says. 

The NeurIPS 2023 paper that he wrote with Jegelka contains two theorems that were proved mathematically. “The first theorem shows that an improvement in sample complexity is achievable with the general algorithm we provide,” Tahmasebi says. The second theorem complements the first, he added, “showing that this is the best possible gain you can get; nothing else is achievable.”

He and Jegelka have provided a formula that predicts the gain one can obtain from a particular symmetry in a given application. A virtue of this formula is its generality, Tahmasebi notes. “It works for any symmetry and any input space.” It works not only for symmetries that are known today, but it could also be applied in the future to symmetries that are yet to be discovered. The latter prospect is not too farfetched to consider, given that the search for new symmetries has long been a major thrust in physics. That suggests that, as more symmetries are found, the methodology introduced by Tahmasebi and Jegelka should only get better over time.

According to Haggai Maron, a computer scientist at Technion (the Israel Institute of Technology) and NVIDIA who was not involved in the work, the approach presented in the paper “diverges substantially from related previous works, adopting a geometric perspective and employing tools from differential geometry. This theoretical contribution lends mathematical support to the emerging subfield of ‘Geometric Deep Learning,’ which has applications in graph learning, 3D data, and more. The paper helps establish a theoretical basis to guide further developments in this rapidly expanding research area.”

Doctors have more difficulty diagnosing disease when looking at images of darker skin

Mon, 02/05/2024 - 5:00am

When diagnosing skin diseases based solely on images of a patient’s skin, doctors do not perform as well when the patient has darker skin, according to a new study from MIT researchers.

The study, which included more than 1,000 dermatologists and general practitioners, found that dermatologists accurately characterized about 38 percent of the images they saw, but only 34 percent of those that showed darker skin. General practitioners, who were less accurate overall, showed a similar decrease in accuracy with darker skin.

The research team also found that assistance from an artificial intelligence algorithm could improve doctors’ accuracy, although those improvements were greater when diagnosing patients with lighter skin.

While this is the first study to demonstrate physician diagnostic disparities across skin tone, other studies have found that the images used in dermatology textbooks and training materials predominantly feature lighter skin tones. That may be one factor contributing to the discrepancy, the MIT team says, along with the possibility that some doctors may have less experience in treating patients with darker skin.

“Probably no doctor is intending to do worse on any type of person, but it might be the fact that you don’t have all the knowledge and the experience, and therefore on certain groups of people, you might do worse,” says Matt Groh PhD ’23, an assistant professor at the Northwestern University Kellogg School of Management. “This is one of those situations where you need empirical evidence to help people figure out how you might want to change policies around dermatology education.”

Groh is the lead author of the study, which appears today in Nature Medicine. Rosalind Picard, an MIT professor of media arts and sciences, is the senior author of the paper.

Diagnostic discrepancies

Several years ago, an MIT study led by Joy Buolamwini PhD ’22 found that facial-analysis programs had much higher error rates when predicting the gender of darker skinned people. That finding inspired Groh, who studies human-AI collaboration, to look into whether AI models, and possibly doctors themselves, might have difficulty diagnosing skin diseases on darker shades of skin — and whether those diagnostic abilities could be improved.

“This seemed like a great opportunity to identify whether there’s a social problem going on and how we might want fix that, and also identify how to best build AI assistance into medical decision-making,” Groh says. “I’m very interested in how we can apply machine learning to real-world problems, specifically around how to help experts be better at their jobs. Medicine is a space where people are making really important decisions, and if we could improve their decision-making, we could improve patient outcomes.”

To assess doctors’ diagnostic accuracy, the researchers compiled an array of 364 images from dermatology textbooks and other sources, representing 46 skin diseases across many shades of skin.

Most of these images depicted one of eight inflammatory skin diseases, including atopic dermatitis, Lyme disease, and secondary syphilis, as well as a rare form of cancer called cutaneous T-cell lymphoma (CTCL), which can appear similar to an inflammatory skin condition. Many of these diseases, including Lyme disease, can present differently on dark and light skin.

The research team recruited subjects for the study through Sermo, a social networking site for doctors. The total study group included 389 board-certified dermatologists, 116 dermatology residents, 459 general practitioners, and 154 other types of doctors.

Each of the study participants was shown 10 of the images and asked for their top three predictions for what disease each image might represent. They were also asked if they would refer the patient for a biopsy. In addition, the general practitioners were asked if they would refer the patient to a dermatologist.

“This is not as comprehensive as in-person triage, where the doctor can examine the skin from different angles and control the lighting,” Picard says. “However, skin images are more scalable for online triage, and they are easy to input into a machine-learning algorithm, which can estimate likely diagnoses speedily.”

The researchers found that, not surprisingly, specialists in dermatology had higher accuracy rates: They classified 38 percent of the images correctly, compared to 19 percent for general practitioners.

Both of these groups lost about four percentage points in accuracy when trying to diagnose skin conditions based on images of darker skin — a statistically significant drop. Dermatologists were also less likely to refer darker skin images of CTCL for biopsy, but more likely to refer them for biopsy for noncancerous skin conditions.

“This study demonstrates clearly that there is a disparity in diagnosis of skin conditions in dark skin. This disparity is not surprising; however, I have not seen it demonstrated in the literature such a robust way. Further research should be performed to try and determine more precisely what the causative and mitigating factors of this disparity might be,” says Jenna Lester, an associate professor of dermatology and director of the Skin of Color Program at the University of California at San Francisco, who was not involved in the study.

A boost from AI

After evaluating how doctors performed on their own, the researchers also gave them additional images to analyze with assistance from an AI algorithm the researchers had developed. The researchers trained this algorithm on about 30,000 images, asking it to classify the images as one of the eight diseases that most of the images represented, plus a ninth category of “other.”

This algorithm had an accuracy rate of about 47 percent. The researchers also created another version of the algorithm with an artificially inflated success rate of 84 percent, allowing them to evaluate whether the accuracy of the model would influence doctors’ likelihood to take its recommendations.

“This allows us to evaluate AI assistance with models that are currently the best we can do, and with AI assistance that could be more accurate, maybe five years from now, with better data and models,” Groh says.

Both of these classifiers are equally accurate on light and dark skin. The researchers found that using either of these AI algorithms improved accuracy for both dermatologists (up to 60 percent) and general practitioners (up to 47 percent).

They also found that doctors were more likely to take suggestions from the higher-accuracy algorithm after it provided a few correct answers, but they rarely incorporated AI suggestions that were incorrect. This suggests that the doctors are highly skilled at ruling out diseases and won’t take AI suggestions for a disease they have already ruled out, Groh says.

“They’re pretty good at not taking AI advice when the AI is wrong and the physicians are right. That’s something that is useful to know,” he says.

While dermatologists using AI assistance showed similar increases in accuracy when looking at images of light or dark skin, general practitioners showed greater improvement on images of lighter skin than darker skin.

“This study allows us to see not only how AI assistance influences, but how it influences across levels of expertise,” Groh says. “What might be going on there is that the PCPs don't have as much experience, so they don’t know if they should rule a disease out or not because they aren’t as deep into the details of how different skin diseases might look on different shades of skin.”

The researchers hope that their findings will help stimulate medical schools and textbooks to incorporate more training on patients with darker skin. The findings could also help to guide the deployment of AI assistance programs for dermatology, which many companies are now developing.

The research was funded by the MIT Media Lab Consortium and the Harold Horowitz Student Research Fund.

How to avoid a “winner’s curse” for social programs

Mon, 02/05/2024 - 12:00am

Back in the 1980s, researchers tested a job-training program called JOBSTART in 13 U.S. cities. In 12 locations, the program had a minimal benefit. But in San Jose, California, results were good: After a few years, workers earned about $6,500 more annually than peers not participating in it. So, in the 1990s, U.S. Department of Labor researchers implemented the program in another 12 cities. The results were not replicated, however. The initial San Jose numbers remained an outlier.

This scenario could be a consequence of something scholars call the “winner’s curse.” When programs or policies or ideas get tested, even in rigorous randomized experiments, things that function well one time may perform worse the next time out. (The term “winner’s curse” also refers to high winning bids at an auction, a different, but related, matter.)

This winner’s curse presents a problem for public officials, private-sector firm leaders, and even scientists: In choosing something that has tested well, they may be buying into decline. What goes up will often come down.

“In cases where people have multiple options, they pick the one they think is best, often based on the results of a randomized trial,” says MIT economist Isaiah Andrews. “What you will find is that if you try that program again, it will tend to be disappointing relative to the initial estimate that led people to pick it.”

Andrews is co-author of a newly published study that examines this phenomenon and provides new tools to study it, which could also help people avoid it.  

The paper, “Inference on Winners,” appears in the February issue of the Quarterly Journal of Economics. The authors are Andrews, a professor in the MIT Department of Economics and an expert in econometrics, the statistical methods of the field; Toru Kitagawa, a professor of economics at Brown University; and Adam McCloskey, an associate professor of economics at the University of Colorado.

Distinguishing differences

The kind of winner’s curse addressed in this study dates back a few decades as a social science concept, and also comes up in the natural sciences: As the scholars note in the paper, the winner’s curse has been observed in genome-wide association studies, which attempt to link genes to traits.

When seemingly notable findings fail to hold up, there may be varying reasons for it. Sometimes experiments or programs are not all run the same way when people attempt to replicate them. At other times, random variation by itself can create this kind of situation.

“Imagine a world where all these programs are exactly equally effective,” Andrews says. “Well, by chance, one of them is going to look better, and you will tend to pick that one. What that means is you overestimated how effective it is, relative to the other options.” Analyzing the data well can help distinguish whether the outlier result was due to true differences in effectiveness or to random fluctuation.

To distinguish between these two possibilities, Andrews, Kitagawa, and McCloskey have developed new methods for analyzing results. In particular, they have proposed new estimators — a means of projecting results — which are “median unbiased.” That is, they are equally likely to over- and underestimate effectiveness, even in settings with a winner’s curse. The methods also produce confidence intervals that help quantify the uncertainty of these estimates. Additionally, the scholars propose “hybrid” inference approaches, which combine multiple methods of weighing research data, and, as they show, often yield more precise results than alternative methods.

With these new methods, Andrews, Kitagawa, and McCloskey establish firmer boundaries on the use of data from experiments — including confidence intervals, median unbiased estimates, and more. And to test their method’s viability, the scholars applied it to multiple instances of social science research, beginning with the JOBSTART experiment.

Intriguingly, of the different ways experimental results can become outliers, the scholars found that the San Jose result from JOBSTART was probably not just the result of random chance. The results are sufficiently different that there may have been differences in the way the program was administered, or in its setting, compared to the other programs.

The Seattle test

To further test the hybrid inference method, Andrews, Kitagawa, and McCloskey then applied it to another research issue: programs providing housing vouchers to help people move into neighborhoods where residents have greater economic mobility.

Nationwide economics studies have shown that some areas generate greater economic mobility than others, all things being equal. Spurred by these findings, other researchers collaborated with officials in King County, Washington, to develop a program to help voucher recipients move to higher-opportunity areas. However, predictions for the performance of such programs might be susceptible to a winner’s curse, since the level of opportunity in each neighborhood is imperfectly estimated.

Andrews, Kitagawa, and McCloskey thus applied the hybrid inference method to a test of this neighborhood-level data, in 50 “commuting zones” (essentially, metro areas) across the U.S. The hybrid method again helped them understand how certain the previous estimates were.

Simple estimates in this setting suggested that for children growing up in households at the 25th percentile of annual income in the U.S., housing relocation programs would create a 12.25 percentage-point gain in adult income. The hybrid inference method suggests there would instead be a 10.27 percentage-point gain — lower, but still a substantial impact.

Indeed, as the authors write in the paper, “even this smaller estimate is economically large,” and “we conclude that targeting tracts based on estimated opportunity succeeds in selecting higher-opportunity tracts on average.” At the same time, the scholars saw that their method does make a difference.

Overall, Andrews says, “the ways we measure uncertainty can actually become themselves unreliable.” That problem is compounded, he notes, “when the data tells us very little, but we’re wrongly overconfident and think the data is telling us a lot. … Ideally you would like something that is both reliable and telling us as much as possible.”

Support for the research was provided, in part, by the U.S. National Science Foundation, the Economic and Social Research Council of the U.K., and the European Research Council.

Scene at MIT: Learning Ikebana during IAP

Fri, 02/02/2024 - 4:50pm

Since 1988, Hiroko Matsuyama, a master instructor of the Ohara School of Ikebana, has worked with MIT students on the basics of the ancient art of Japanese flower arrangement. Through an Independent Activities Period (IAP) course offered each year by the MIT-Japan Program, Matsuyama works with students to create their own arrangements.

This year marked the final IAP Ikebana course for Matsuyama, who is stepping down. At the conclusion of this year's course, representatives from the MIT-Japan Program presented Matsuyama with a certificate of appreciation.

“These workshops I’ve taught at MIT have been a treasure to me,” says Matsuyama. “It made me feel more global and become more worldly.”

A chronicler of the biotech boom

Fri, 02/02/2024 - 12:00am

For decades now, MIT’s Kendall Square neighborhood has been dotted by cranes, scaffolding, and construction sites — the unofficial symbols of the biotechnology boom that has made East Cambridge an industry capital.

True, there are other kinds of tech firms in Kendall Square, from Silicon Valley giants to startups. But the Kendall area is one of the places where the biotech business launched in the 1970s. It’s where blockbuster drugs have been developed and an innovative Covid-19 vaccine was created on short notice, and it keeps powering onward today.

“It’s the most vibrant biotechnology cluster in the world,” says MIT Associate Professor Robin Scheffler, a historian of science. “We are talking about a location that plays a huge role in defining the future of how biology can improve the human experience.”

Scheffler has become a historian of this transformation. An expert in the history of bioscience, he is currently writing a book about the rise and further rise of biotech in Kendall Square and greater Boston. Based heavily on original archival documents, Scheffler’s work will present a new look at everyday life in labs to further understand these companies, how innovation clusters function, and how medical innovations shape health care policy.

“A defining characteristic of Kendall Square’s ascendancy in biotechnology is its sheer density,” Scheffler says. “It’s so closely packed together and includes all these other dimensions of science and biology — hospitals, medical schools, and universities. Research and commercialization and production happen in this very small area.”

He adds: “Looking at the Boston area gives you a window into the evolution and growth of the industry as a whole.”

Studying the fairly recent past lets Scheffler illuminate how the scientific enterprise works today. Scheffler’s first book, “A Contagious Cause,” published in 2019, examined postwar fears that there was a general, transmittable “cancer virus.” A big federal funding effort in the 1960s helped prove otherwise, and in the process uncovered oncogenes — a driver of many cancers — while helping develop molecular biology. Meanwhile, researchers have since found other ways that viral illnesses are implicated in certain kinds of cancers.

In short, biotechnology moves rapidly and unpredictably, and there is never a bad time to analyze its progress. For his research and teaching, Scheffler earned tenure at MIT last year.

Building bridges

Asked about his own career trajectory, Scheffler — like many a good historian — can cite multiple factors to explain it, with some representing root causes. Scheffler has a long-standing inclination to find different fields of study fascinating, and to link them together. The history of science allows him to do that perpetually.

Growing up in California, Scheffler enjoyed philosophy, science, and math as a student, then attended the University of Chicago as an undergraduate and started redefining his interests a little.

“By the time I got to college I really enjoyed bridging things together,” he says. “I ended up being interested in two things, history and chemistry, that are both bridge-building fields. History bridges humanistic questions about life and experience with the social sciences, and chemistry bridges physics with biology.”

Scheffler received his undergraduate degree in both history and chemistry, and credits a few Chicago faculty from the time — Ronald Suny, Cathy Gere, and the late Alison Winter — with spurring his interest in the history of science. He earned a master’s degree in the history and philosophy of science from Cambridge University, supported by a National Science Foundation Graduate Fellowship — unusually for a historian of science — then moved to Yale University for his doctoral studies.

There, with historian of science Daniel Kevles as his advisor, Scheffler zeroed in on tumor viruses as his dissertation topic on its interdisciplinary merits.

“If I followed tumor viruses, I would have a historical object that allowed me to go to many realms: politics and policy, medicine, molecular biology,” Scheffler says. “I wanted to produce history that dissolved disciplinary divides. I think it’s important because it allows scientists to understand they are members of society and not just of the scientific community, but it also produces, I hope, a nuanced appreciation of what science can do.”

Scheffler also hit on a timely topic by publishing a major book on federally backed virus research just before the global Covid-19 pandemic occurred.

“Interest in viruses has spiked,” Scheffler says. “People want to know about the history of viral research in the 20th century, and regard it as a resource.” After the pandemic started, when Scheffler taught a course about biotech, he says, in class discussions, “Everybody’s example of biotechnology was a vaccine.”

Of his first book, he also notes: “Viruses were objects of an ambitious and positive effort to structure research. The overall vision that the government could step in to make [and support] a valuable contribution remains a very powerful idea. Having an appreciation for what was happening then, I hope, provides useful ideas for how to approach the present.”

A spotlight on “invisible technicians”

While wrapping up the book, Scheffler started writing a chapter about how the hunt for tumor viruses had helped create the contemporary biotech industry. But it did not quite fit with the rest of his material.

“I realized I wasn’t looking at the final chapter of a first book, I was looking at the outline of a second book,” Scheffler says.

After that dawned on him, Scheffler began researching the second project, centering it on the Boston area. And while some parts of the Kendall Square biotech boom have been well-documented, others remain less chronicled — such as the daily process of lab work that turns concepts into life-saving medicines.

“I’m very interested in what historians of science call ‘invisible technicians,’” Scheffler says. “We know a fair amount about biotech’s founders. I’m focused on people who are taking scientific ideas and transforming them into meaningful products. Otherwise, they’re just good ideas. Focusing on that level also knits the industry into the city of Cambridge, because that’s where the social dimension of this industry really takes place. It all stacks up in understanding how the world’s leading biotechnology cluster operates.”

Scheffler is looking in detail at the ways academia provides an essential talent pool for the biotech industry and serves as an anchor point for the Boston-area cluster of companies. He is also examining a full range of economic forces, urban planning issues, and other matters essential to thinking about the operations of any industrial cluster of companies. It does not hurt, he notes, to be living in the place he is studying.

“It’s been wonderful to get to know where I live, and understand the layers of history beneath my office in East Cambridge,” Scheffler says. “The opportunity to research this project while living in its midst is a special experience. People have provided me with great suggestions and observations.”

Meanwhile, the cranes and booms keep arriving in East Cambridge, the frames of buildings keep rising, and new firms keep exploring leading-edge concepts in medical research.

“At every single juncture, more companies arrive and it continues to grow,” Scheffler says.

Projects investigating Swahili, global media win SHASS Humanities Awards

Thu, 02/01/2024 - 1:50pm

Two projects — the Global Mediations Lab led by Paul Roquet and the MIT Swahili Studies Initiative led by Per Urlaub — have won Humanities Awards from the MIT School of Humanities, Arts, and Social Sciences.

The pilot program, launched in fall 2023, aims to support humanities-focused, collaborative projects that can have a broad impact within SHASS or MIT, or have a substantial impact on undergraduate education. Each winning project receives up to $100,000 in funding.

Paul Roquet: Investigating media and information impacts 

Paul Roquet is the project lead for the Global Mediations Lab, which will enable a globe-spanning study of media texts, industries, and infrastructure.

These studies, Roquet asserts, will reach beyond what he describes as “the usual focus on anglophone North America and Europe” to “map the global media landscape in its moments of contestation and transformation.” 

“The big, difficult question here is how to enable a more fully global understanding of media technologies — how these tools are used for good and ill, in ways both predictable and unforeseen,” he says. This work, he believes, can provide practitioners with context regarding the history and values feeding the exclusion of other ideas and perspectives. “We seek to understand how the spread of media is itself mediated by culture, place, politics, and history,” Roquet states.

Roquet will work alongside co-principal investigator Paloma Duong, associate professor of Latin American studies in MIT Comparative Media Studies/Writing (CMS/W), and principal investigator Ian Condry, professor of Japanese culture and media studies, CMS/W, and MIT Anthropology. They anticipate an integrated, diverse, and inclusive slate of events, conferences, and other efforts. 

“I think it would also be great to experiment with other formats that take seriously our own media milieu, or that allow for more participatory collaborations and more process-oriented (versus outcome-oriented) forms of research and scholarship,” Duong says.

The team wants to develop, deliver, and maintain an expansive suite of operations that invites participation from across MIT and the world. Faculty, postdocs, graduate students, and MIT Undergraduate Research Opportunities Program participants can benefit.

Roquet believes the Global Mediations Lab can serve as a hub for mapping how media practices transform as they spread around the world, and the importance of this understanding for work at MIT and among the broader community. “I want the Global Mediations Lab to be a venue for experimenting with how to bring global media insights more directly to bear on the understanding of media and technology,” Roquet says.

Per Urlaub: Reexamining language studies and curricula

Per (pronounced "pear") Urlaub, project lead of the MIT Swahili Studies Initiative, envisions a robust program scheduled during MIT’s annual Independent Activities Period. Urlaub and his colleagues want to offer students, colleagues, and staff the opportunity to study Swahili and associated cultures over the next five years throughout the academic year through co-curricular events.

“There is an undeniable gap in MIT’s language curriculum — and this gap negatively impacts the ability of MIT undergraduate students to consider the perspectives of the African continent in their important work,” says Urlaub, who heads MIT Global Languages.

Urlaub has enlisted the help of several colleagues from across multiple investigative areas at MIT to help plan and launch the Swahili studies program. They include:

Urlaub selected Swahili for further study because “it’s one of the largest African languages, and arguably the language that has currently the most significant momentum in terms of growth and impact.” 

Swahili, Urlaub notes, has been spoken primarily in Tanzania, Kenya, and Mozambique, but the total number of Swahili speakers, be they native or second-language speakers, is estimated to be around 200 million. 

“In recent decades, the language has developed into a lingua franca across Eastern Africa, competing successfully for this status with English,” Urlaub continues.

Swahili’s growing influence is evident in its ubiquity across a substantial swath of the African continent, widely used in the African Great Lakes region, East and Southern Africa, some parts of the Democratic Republic of the Congo, Malawi, Mozambique, the southern tip of Somalia, and Zambia.

Urlaub highlights the value of language education at MIT while also acknowledging what he describes as “the enduring impact of colonialism on language and cultural studies.”

“We believe we owe the MIT community opportunities to broaden their intellectual horizons toward the African continent,” Urlaub says.

Urlaub wants students to appreciate the complex and fascinating linguistic landscape of African countries, including the implications of the dominance of Swahili language for other regional languages. He further seeks expanded opportunities for student and faculty access to African nations’ rich historical and cultural tapestries. 

“MIT students’ opportunities to engage with Africa are reduced to either mono-linguistic exchanges in English, or through other languages in our current curriculum that were introduced to the continent through military conquest and colonial exploitation, like French, Portuguese, and Arabic,” Urlaub continues. 

Ultimately, Urlaub values the investigation of language as a key element in cross-disciplinary understanding for future leaders. 

“MIT students gravitate to us because many recognize the value of linguistic and intercultural skills as tools that will empower them to address some of the world’s most urgent challenges by collaborating with partners around the world,” Urlaub asserts.

DiOnetta Jones Crayton: Change-maker at MIT

Thu, 02/01/2024 - 12:00pm

Associate Dean and Office of Minority Education (OME) Director DiOnetta Jones Crayton has announced that she will step down from her role on Feb. 2. She has led the office for 14 years, advancing OME’s efforts to provide a robust portfolio of programs, services, and resources for undergraduate students of color.

“It has been my honor to serve as director of the OME for the past 14 years,” Crayton wrote in a letter to the staff of the Office of the Vice Chancellor announcing her departure. “As a team, we have accomplished great things together … It has been so rewarding and such a blessing to contribute to so many lives as well as different committees, programs, events, and services over the years.”

Founded in 1975, OME aims to foster academic excellence, build strong communities, and cultivate students’ professional mindsets to position them to become leaders in all career fields, as well as in civic life.

“DiOnetta has been a long-standing advisor, mentor, and change-maker at the Institute,” says Ian A. Waitz, vice chancellor for undergraduate and graduate education. “She has served on numerous Institute committees and been an essential thought partner in navigating some of the most challenging issues facing our students. I have personally valued her commitment to excellence, her strategic vision and leadership, and her ability to communicate her passion to others.”

Indeed, Crayton has been a change-maker since she arrived at MIT in August 2009, after holding leadership roles at Cornell University, the National Consortium for Graduate Degrees for Minorities in Engineering and Science, the University of California at Berkeley, and the University of the Pacific in Stockton, California. Within her first academic year alone, OME adopted a new mission statement; launched comprehensive, data-driven assessments of several existing programs; and devised a new staffing model to ensure the office would reach “optimal success,” as she said at the time.

She also piloted several new programs that year that have become mainstays in OME, including Master Your Future, a professional development workshop series. And she restructured OME’s industry partnership program, the Industrial Advisory Council for Minority Education (IACME), resulting in a threefold increase in member companies, as well as adding nonprofits, government labs, and alumni affinity groups to the mix.

Beyond making campus-based improvements, DiOnetta also “led outward,” co-chairing a major conference on underrepresented minority student success in higher education, held at MIT in April 2010. The conference brought together national experts, university diversity officers, and academic administrators from Ivy-Plus schools and other leading institutions to discuss the challenges at their institutions. The lessons gleaned from the gathering informed her strategic vision for her office, as well as her involvement in diversity, equity, and inclusion efforts more broadly at MIT.

Cordelia Price ’78, SM ’82, who has worked with Crayton since 2009, says, “I have seen DiOnetta’s excellent leadership, organizational, communication, initiative, effective meeting, and listening skills in action.” Price serves as the Black Alumni of MIT (BAMIT) representative to IACME and as chair of operations for the BAMIT Community Advancement Program, which funds student projects that benefit underserved communities of color.

Under Crayton’s leadership, Price adds, “[OME] programs have helped many students with their academic success, their opportunities for internships, their preparation for future employment or graduate school, and provided opportunities to serve the community. She also established or strengthened mentor programs, including mentors from IACME companies as well as MIT alumni.”

During Crayton’s tenure, OME has embraced a spirit of innovation — a quality well-suited for MIT’s ethos — to best meet students’ needs. For example, long before the pandemic forced the Institute to pivot to remote instruction and programs in 2020, she and her staff were already implementing a plan to adapt one of OME’s signature programs, Interphase EDGE (IP), into an online format. Applications for IP, a two-year scholar enrichment program that includes a seven-week summer session on campus, had been increasing dramatically. In an effort to serve more students, in 2018 Crayton’s team began working with MITx on an online platform to accommodate a new, remote cohort called IPx. By 2020, with that infrastructure in place, OME was able to offer the remote program to both cohorts, despite the closure of campus that summer.

So much of OME’s success comes down to Crayton’s emphasis on listening, says Myles Noel, a senior majoring in chemistry. He’s gotten to know her well as an IP participant and through interacting with her on various committees and student organizations. “Her leadership style is a lot of listening; she’s willing to listen to the issues that students are experiencing and from that, she is able to offer support and advice,” he says.

Listening to students has also informed the development of new programs. Two recent examples are The Standard, for men of color, and the CRWN (pronounced “crown”), for women of color. Both programs address a need that undergraduate students articulated — a desire to create a close-knit affinity group — while also supporting their academic and professional success.

“DiOnetta’s extraordinary leadership and unwavering emotional investment has helped countless students identify, open, and walk through doors of opportunity,” says Chancellor Melissa Nobles. “Her deep belief in our students has inspired them to believe in themselves and work towards their dreams — especially when they were unsure of themselves. She has made OME, MIT, and our world a better place over these past 14 years.”

Indeed, students speak fondly of Crayton’s ability to inspire them to believe in themselves. Noel says she has been an invaluable mentor and advisor. “She has been a pillar of support for me and a lot of other students in the community.” Kerrie Greene, an MD/PhD student who has known Crayton for almost 10 years, adds, “Dean Crayton is such a light, her warmth surrounds everything and everyone she supports. Under her guidance and leadership, I have seen countless numbers of my peers, including myself, blossom during their time at MIT and beyond.”

“Students will feel her loss, but the impact that she’s had is going to be lasting, and I think that’s something to be happy for,” says Noel.

Noubar Afeyan PhD ’87 to deliver MIT’s 2024 Commencement address

Thu, 02/01/2024 - 7:00am

Noubar Afeyan PhD ’87, an inventor and parallel entrepreneur with a penchant for bold ideas, will deliver the address at the OneMIT Commencement Ceremony on Thursday, May 30.

Afeyan is the founder and CEO of the venture creation company Flagship Pioneering, which founds companies that build biotechnology platforms to transform human health and sustainability. Since its founding in 2000, the company has built more than 100 science-based companies; Flagship-founded companies currently have more than 60 drugs in clinical development.

One of Afeyan’s most well-known successes is Moderna, which invented and produced an effective Covid-19 vaccine approved and deployed to billions of people in more than 70 countries. Currently the company’s chairman, he co-founded Moderna working with his team at Flagship and three academic co-founders in 2010, when the idea of using messenger RNA in therapies was virtually unheard of. But Afeyan has long been known for asking unconventional “What if?” questions and building companies with visionary goals. “Why wouldn’t you think you can actually change the world?” he said in a 2021 interview with Forbes.

“You might expect that after Moderna’s success in bringing lifesaving Covid-19 vaccines to the world, Noubar would rest on his laurels. But he isn’t that kind of entrepreneur,” says MIT President Sally Kornbluth. “In fact, he cautions that anyone seeking to benefit humanity on a large scale should avoid getting comfortable. He’s not afraid to make long-shot, long-term bets, investing in the most innovative science for the biggest impact. We are delighted to welcome Noubar to share his bold, dynamic outlook with the Class of 2024.”

“MIT is a place where audacious ideas abound, thanks in large part to its remarkable students. I’m thrilled to address the Class of 2024 as they prepare to make an impact in the world. We need their curiosity, imagination, inventiveness, courage, and determination — now more than ever,” Afeyan says.

A member of the MIT Corporation, Afeyan has a long relationship with the Institute. He earned his PhD in biochemical engineering at MIT in 1987 and was a senior lecturer at the MIT Sloan School of Management for 16 years, starting in 2000. Among other activities, he serves on the advisory board of the MIT Abdul Latif Jameel Clinic for Machine Learning, and has spoken at numerous Institute events, including MIT Solve.

“Afeyan has shown repeatedly that outstanding scientific talent, when relentlessly focused on audacious goals, can yield breakthroughs that many thought were impossible. His prolific record of invention, along with his coaching, funding, and mentoring of scores of science-driven startup businesses, provides a user’s guide on how to channel advances in science and technology to promote the public good,” says James Poterba, the Mitsui Professor of Economics and the chair of the Commencement Committee.

Born in Beirut to Armenian parents, Afeyan is a staunch advocate for the contributions of immigrants to economic and scientific progress. He is the co-founder of the Aurora Prize for Awakening Humanity and a number of other philanthropic projects.

"I’m excited to learn from Dr. Afeyan as our commencement speaker. His work in biotechnology and entrepreneurship is truly inspiring, and I can’t wait to hear the insights and experiences that he will share with us,” senior class president Penny Brant says.

“I hold great admiration for the groundbreaking work of Moderna and its revolutionary vaccine development. Dr. Afeyan’s contributions to the field of biotechnology are truly commendable. As the UA president and a representative of my constituents, I am interested to hear what insights he will share with our graduating class,” Andre Hamelberg, president of the Undergraduate Association, says.

“I think it’s great that our speaker will have shared so many of our experiences. I’m excited for what advice he will offer us all,” Mikala Molina, president of the Graduate Student Council, says.

Afeyan joins notable recent MIT Commencement speakers including YouTuber and inventor Mark Rober (2023); Director-General of the World Trade Organization Ngozi Okonjo-Iweala (2022); lawyer and social justice activist Bryan Stevenson (2021); retired U.S. Navy four-star admiral William McRaven (2020); three-term New York City mayor and philanthropist Michael Bloomberg (2019); and Facebook COO Sheryl Sandberg (2018).            

A night at the orchestra, with Pokémon on the program

Thu, 02/01/2024 - 12:00am

Around 50 musicians crowd the well-lit Kresge Auditorium stage. They wear formal black attire and concentrated facial expressions. As the conductor carefully raises her baton, the audience comes to a perfect silence. A single piano lets forth a delicate cascade of high-pitched notes and is soon joined by a dozen violins that burst into a catchy, fast-paced melody. Many audience members look at their friends and smile. They recognize the tune.

The 90-minute performance goes on to incorporate saxophones, cellos, percussion instruments, a French horn, and a variety of other instruments. But with due respect to Beethoven and Bach, their work did not make the program on this night. Instead, the orchestra offered emotionally stirring renditions of songs from video games like “Mario Kart”, “Plants vs. Zombies,” and “Pokémon.”

This is the MIT Video Game Orchestra, a student-led group dedicated to performing original arrangements of video game music, film soundtracks, and other kinds of music not usually heard in concert halls. The group performs at least two concerts a year, and all arrangements are written by members of the orchestra and tailored to the group.

In addition to the performances, the group also runs workshops to help members develop their skills, provides soundtracks and introductions for events, and hosts socials featuring film screenings and video games.

“I think it’s really cool that there are so many genres that fall under the umbrella term of video game music,” says junior Lynn Jung, who serves a co-music director of the group. “It allows you to explore different musical avenues.”

Many members of the group grew up learning classical instruments and playing classical music. The Video Game Orchestra gives them the opportunity to break that mold and play music more in line with their interests.

“I was definitely into video game music growing up,” says Alex Wardle, a junior who is in charge of managing the group’s library of music. “I listened to it a lot in high school and I really wanted to perform it, but I didn't have the opportunity. None of the music groups that I joined would cover modern soundtracks. I always wished there was an opportunity for me to get to play some of the pieces I really love.”

The group’s organizers are quick to point out that a love for video games is not a requirement for joining. Some students join because they want to continue playing their instruments in a more casual environment. But many came to the Video Game Orchestra to merge two longtime hobbies.

“I was more into playing video games than listening to them, but at the audition, I remember saying, ‘I like video games and I like music, so I will definitely like video game music,’" Jung recalls.

Beyond the tunes, there are several key differences between the group and a traditional orchestra, the largest being the open approach to preparing the arrangements.

“It's a more collaborative environment, where it’s less the conductors choosing the music we play and more of a community effort based on the pieces we like as a community,” Wardle says. “Through our feedback process with arrangements, it becomes this group effort in which everyone’s working together.”

A key part of that process is inviting students to try their hand at writing music through workshops each semester.

“I had a little background in writing music. I loved listening to videogame music and I’d played for quite a while, but I definitely hadn’t done anything like an orchestral arrangement,” Wardle says. “By playing student-made arrangements my first year, I realized I could do something like that. There were people I could reach out to, like other students, who had done it in the past, so I jumped straight in and have been pushing out arrangements ever since.”

Many members joined because they loved making music and video games, but they say they’ve stayed because of the community.

“A big reason I’ve stayed in VGO is the community and the people,” says Ishika Shah, a senior who serves as the group’s co-music director. “It’s been a great way to meet new people and join a community I’ve really enjoyed being a part of.”

The group’s organizers encourage participants to mingle outside of their instrument section, and rehearsals are often interspersed with casual talk of music and video games. But the music and performances are still taken seriously.

Concerts have had as many as 200 attendees — with many more watching online (the group’s YouTube channel features most performances). Renditions of emotional pieces have sometimes moved people to tears, and because many people attend out of an interest in video games, the group attracts a broader audience to orchestral music than traditional symphony orchestras.

In addition to classically orchestrated headliners, the orchestra also plays pieces that feature more rock or jazz and that get people dancing and clapping along. In one performance of a karaoke favorite, “Baka Mitai” (or “I’ve Been a Fool” in Japanese), the orchestra invited the audience to sing along.

The orchestra’s decisions are guided by whatever sounds fun — and for the people that don’t put video game music in the same class as Beethoven, the group believes they’re adding credibility to a perhaps underrated genre.

“Honestly, I think at the end of the day what I care about when I am listening to music or playing music is just that the music resonates with me in some way, or that it’s fun to listen to or fun to play,” Jung says. “For some people, that might be classical music, but for me that happens to be a lot of video game music.”

Professor Emeritus Igor Paul, an expert in product design and safety, dies at 87

Wed, 01/31/2024 - 4:35pm

Professor Emeritus Igor Paul ’60, SM ’61, PhD ’64, an influential professor of mechanical engineering, passed away on Dec. 17, 2023 at his home in St. Petersburg, Florida. He was 87. 

Paul was a member of the MIT Department of Mechanical Engineering faculty from 1964 until his retirement in 2003, and helped to develop the department’s design and manufacturing curriculum, which continues to thrive today. His research interests included product and machine design, safety, and risk analysis; robotics; biomechanics; and dynamic systems modeling. 

A leading expert in product design and safety, with a particular focus on sports devices like helmets, Igor served as an expert witness in many landmark product liability cases. He also contributed to the development of artificial joints and the development of inertial guidance systems for NASA and provided consulting services to a number of area hospitals and medical centers. 

Paul was known for his good nature, quick wit, and pleasant disposition, and his deep passion for teaching. Among the courses he instructed through the years were 2.72 (Elements of Mechanical Design), 2.70 (now 2.007, Design and Manufacturing I), and 2.009 (Product Engineering Processes). He served for many years as the faculty advisor to the student chapter of the American Society of Mechanical Engineers. 

He also co-authored more than 80 publications and won numerous awards in the areas of design, bio-engineering, and education, including the DeFlorez Award for Creativity in Design (MIT, 1960); the Ralph R. Teetor Distinguished Educator Award (SAE); Outstanding Orthopedic Research Award (Orthopedic Research Society); and the Carl Soderberg Distinguished Service Award (MIT, 2003). 

Paul was born on Oct. 28, 1936, in Kharkov, Ukraine, and migrated across Europe during World War II, arriving in the United States eight years later on Christmas Day 1951. After gaining admission to MIT, he earned all three of his degrees in the Department of Mechanical Engineering.

He is survived by his wife, Natasha Paul (Gruzinov); his daughter, Tahisa Southwell of Las Vegas, Nevada; his son, Victor Paul of Zurich, Switzerland; and four grandchildren. He was preceded in death by his parents, Leo and Lily Paul; his sister, Nina Karouna; and his beloved daughter, Tanya Paul.

Outside of his professional achievements, Paul enjoyed tennis, golf, and traveling the globe. After his retirement in 2003, he and Natasha moved from Andover, Massachusetts, to New London, New Hampshire, then recently settled in St. Petersburg, Florida. 

Paul leaves behind a legacy of scientific contributions, dedication to education, and love for his family. 

MIT Press’s Direct to Open opens access to full list of 2024 monographs

Wed, 01/31/2024 - 3:45pm

Now in its third year of operation, the MIT Press' Direct to Open (D2O) recently announced that it reached its full funding goal in 2024 and will open access to 79 new monographs and edited book collections this year

Launched in 2021, D2O is an innovative sustainable framework for open-access monographs that shifts publishing from a solely market-based, purchase model where individuals and libraries buy single e-books, to a collaborative, library-supported open-access model. 

“Reaching our overall funding goal — in full and on time — is a major milestone in developing a sustainable open-access publishing model,” says Amy Harris, senior manager, library relations and sales at the MIT Press. “We are extremely grateful for the support of our library and consortium partners that makes this possible.” 

There are other models that offer fund-to-open opportunities on a title-by-title basis or that focus on opening access within specific disciplines. D2O is unique because it allows the press to open access to its entire slate of scholarly books at scale during each funding cycle. Thanks to D2O, all monograph authors have the opportunity for their work to be open access, and the press can offer equal support to traditionally underfunded disciplines in the social sciences and humanities. 

At a time when the traditional market for scholarly books continues to decline, works funded through D2O are reaching larger audiences online than ever before — averaging 2,694 reads per title and bringing important scholarship to new audiences. D2O books have also been academically cited almost 1,100 times.

“D2O is meeting the needs of academics, readers, and libraries alike, and our usage and citation stats demonstrate that the academic community is embracing open-access scholarship across a wide range of fields and for many purposes — from the classroom to research projects to professional interest reading,” says Harris. “This further aligns the work of the MIT Press with the mission of MIT to advance knowledge in science, technology, the arts, and other areas of scholarship to best serve the nation and the world, and provides opportunities for expansion of the model in the forthcoming years.”

The MIT Press will now turn its attention to its fourth funding cycle and invites libraries and library consortia to participate. For details, please visit: mitpress.mit.edu/D2O.

New fellowship to help advance science journalism in Africa and the Middle East

Wed, 01/31/2024 - 3:25pm

The Knight Science Journalism Program at MIT has announced a new one-semester fellowship — the Fellowship for Advancing Science Journalism in Africa and the Middle East — that will start this year.

The fellowship, developed through a generous gift from the global publishing company Springer Nature, was created in honor of the influential Egyptian science journalist Mohammed Yahia, who died last year at the age of 41.

Yahia worked for Springer Nature for over 13 years, primarily as managing editor of the Nature Portfolio in the Middle East, where he built an award-winning team. He was widely admired for his work advancing the status of science journalism both in that region and throughout Africa. He was president of the World Federation of Science Journalists from 2017 to 2019, working also to help build a network of science journalists around the globe.

Springer Nature, the founding sponsor of the fellowship, is well-known for its standing as a publisher of some the most high-profile and respected research journals and magazines in the world. “Mohammed was known for his unwavering commitment to science and his talent for simplifying complex research,” says Stephen Pincock, vice president in Springer Nature’s Solutions Group. “With this fellowship we want to inspire more to follow in his footsteps, as trusted communicators of evidence-based research.”

The first Fellowship for Advancing Science Journalism in Africa and the Middle East will be hosted by the Knight Science Journalism Program this fall and will continue in subsequent fall semesters. Thanks to a generous grant from Springer Nature, the program will offer a $40,000 stipend for the fellowship period from Aug. 16 to Dec. 31. KSJ will also cover the fellow’s health insurance and a $5,000 housing stipend to help with relocation costs.

The Knight Science Journalism Program, established at MIT in 1983, is the world’s leading science journalism fellowship program. More than 400 leading science journalists from six continents have graduated from the full-year academic program, which offers a course of study at MIT, Harvard University, and other leading institutions in the Boston area, as well as specialized training workshops, seminars, and science-focused field trips for all attendees.

“The Knight Science Journalism Program is honored to partner with Springer Nature in honoring Mohammed Yahia and in creating this new fellowship to help support science journalism in this important part of the world,” says KSJ Director Deborah Blum. “We believe strongly in the global nature of both science and the importance of telling its story in the most helpful and insightful way. We believe this new fellowship is an excellent way to advance that mission.”

Fellows supported by this new program will join the regular KSJ class of journalists for the fall semester in a program of study at MIT and other Cambridge/Boston area universities and in the program’s seminars, training workshops, and field trips throughout the semester. They will also have access to such benefits as MIT’s program of subsidized public transportation and access to libraries, museums, and other Boston-area programs, as well as connections to a thriving community of science journalists.

The program will open an applications process for journalists from Africa and the Middle East on Feb. 1 and submissions will be accepted until March 1. All journalists from the region with at least three years of experience in covering science, health, and the environment are encouraged to apply. The selected fellow will be announced by the end of March.

For further questions about the fellowship or the application process, please write to info@ksj.mit.edu.

Blood cell family trees trace how production changes with aging

Wed, 01/31/2024 - 3:10pm

Blood cells make up the majority of cells in the human body. They perform critical functions and their dysfunction is implicated in many important human diseases, from anemias to blood cancers like leukemia. The many types of blood cells include red blood cells that carry oxygen, platelets that promote clotting, as well as the myriad types of immune cells that protect our bodies from threats such as viruses and bacteria.

What these diverse types of blood cells have in common is that they are all produced by hematopoietic stem cells (HSCs). HSCs must keep producing blood cells in large quantities throughout our entire lives in order to continually replenish our bodies’ supply. Researchers want to better understand HSCs and the dynamics of how they produce the many blood cell types, both in order to understand the fundamentals of human blood production and to understand how blood production changes during aging or in cases of disease.

Jonathan Weissman, an MIT professor of biology, member of the Whitehead Institute for Biomedical Research, and a Howard Hughes Medical Investigator; Vijay Sankaran, a Boston Children’s Hospital and Harvard Medical School associate professor who is also a Broad Institute of MIT and Harvard associate member and attending physician at the Dana Farber Cancer Institute; and Chen Weng, a postdoc in both of their labs, have developed a new method that provides a detailed look at the family trees of human blood cells and the characteristics of the individual cells, providing new insights into the differences between lineages of HSCs. The research, published in the journal Nature on Jan. 22, answers some long-standing questions about blood cell production and how it changes as we age. The work also demonstrates how this new technology can give researchers unprecedented access to any human cells’ histories and insight into how those histories have shaped their current states. This will render open to discovery many questions about our own biology that were previously unanswerable.

“We wanted to ask questions that the existing tools could not allow us to,” Weng says. “This is why we brought together Jonathan and Vijay’s different expertise to develop a new technology that allows us to ask those questions and more, so we can solve some of the important unknowns in blood production.”

How to trace the lineages of human cells

Weissman and others have previously developed methods to map the family trees of cells, a process called lineage tracing, but typically this has been done in animals or engineered cell lines. Weissman has used this approach to shed light on how cancers spread and on when and how they develop mutations that make them more aggressive and deadly. However, while these models can illuminate the general principles of processes such as blood production, they do not give researchers a full picture of what happens inside of a living human. They cannot capture the full diversity of human cells or the implications of that diversity on health and disease.

The only way to get a detailed picture of how blood cell lineages change through the generations and what the consequences of those changes are is to perform lineage tracing on cells from human samples. The challenge is that in the research models used in the previous lineage tracing studies, Weissman and colleagues edited the cells to add a trackable barcode, a string of DNA that changes a little with each cell division, so that researchers can map the changes to match cells to their closest relatives and reconstruct the family tree. Researchers cannot add a barcode to the cells in living humans, so they need to find a natural one: some string of DNA that already exists and changes frequently enough to allow this family tree reconstruction.

Looking for mutations across the whole genome is cost-prohibitive and destroys the material that researchers need to collect to learn about the cells’ states. A few years ago, Sankaran and colleagues realized that mitochondrial DNA could be a good candidate for the natural barcode. Mitochondria are in all of our cells, and they have their own genome, which is relatively small and prone to mutation. In that earlier research, Sankaran and colleagues identified mutations in mitochondrial DNA, but they could not find enough mutations to build a complete family tree: in each cell, they only detected an average of zero to one mutations.

Now, in work led by Weng, the researchers have improved their detection of mitochondrial DNA mutations 10-fold, meaning that in each cell they find around 10 mutations — enough to serve as an identifying barcode. They achieved this through improvements in how they detect mitochondrial DNA mutations experimentally and how they verify that those mutations are genuine computationally. Their new and improved lineage tracing method is called ReDeeM, an acronym drawing from single-cell "regulatory multi-omics with deep mitochondrial mutation profiling." Using the method, they can recreate the family tree of thousands of blood cells from a human blood sample, as well as gather information about each individual cell’s state: its gene expression levels and differences in its epigenome, or the availability of regions of DNA to be expressed.

Combining cells’ family trees with each individual cell’s state is key for making sense of how cell lineages change over time and what the effects of those changes are. If a researcher pinpoints the place in the family tree where a blood cell lineage, for example, becomes biased toward producing a certain type of blood cell, they can then look at what changed in the cells’ state preceding that shift in order to figure out what genes and pathways drove that change in behavior. In other words, they can use the combination of data to understand not just that a change occurred, but what mechanisms contributed to that change.

“The goal is to relate the cell’s current state to its past history,” Weissman says. “Being able to do that in an unperturbed human sample lets us watch the dynamics of the blood production process and understand functional differences in hematopoietic stem cells in a way that has just not been possible before.”

Using this approach, the researchers made several interesting discoveries about blood production.

Blood cell lineage diversity shrinks with age

The researchers mapped the family trees of blood cells derived from each HSC. Each one of these lineages is called a clonal group. Researchers have had various hypotheses about how clonal groups work: Perhaps they are interchangeable, with each stem cell producing equivalent numbers and types of blood cells. Perhaps they are specialized, with one stem cell producing red blood cells, and another producing white blood cells. Perhaps they work in shifts, with some HSCs lying dormant while others produce blood cells. The researchers found that in healthy, young individuals, the answer is somewhere in the middle: Essentially every stem cell produced every type of blood cell, but certain lineages had biases toward producing one type of cell over another. The researchers took two samples from each test subject four months apart, and found that these differences between the lineages were stable over time.

Next, the researchers took blood samples from people of older age. They found that as humans age, some clonal groups begin to dominate and produce a significantly above-average percent of the total blood cells. When a clonal group outcompetes others like this, it is called expansion. Researchers knew that in certain diseases, a single clonal group containing a disease-related mutation could expand and become dominant. They didn’t know that clonal expansion was pervasive in aging even in seemingly healthy individuals, or that it was typical for multiple clonal groups to expand. This complicates the understanding of clonal expansion but sheds light on how blood production changes with age: The diversity of clonal groups decreases. The researchers are working on figuring out the mechanisms that enable certain clonal groups to expand over others. They are also interested in testing clonal groups for disease markers to understand which expansions are caused by or could contribute to disease.

ReDeeM enabled the researchers to make a variety of additional observations about blood production, many of which are consistent with previous research. This is what they hoped to see: the fact that the tool efficiently identified known patterns in blood production validates its efficacy. Now that the researchers know how well the method works, they can apply it to many different questions about the relationships between cells and what mechanisms drive changes in cell behavior. They are already using it to learn more about autoimmune disorders, blood cancers, and the origins of certain types of blood cells.

The researchers hope that others will use their method to ask questions about cell dynamics in many scenarios in health and disease. Sankaran, who is a practicing hematologist, also hopes that the method one day revolutionizes the patient data to which clinicians have access.

“In the not-too-distant future, you could look at a patient chart and see that this patient has an abnormally low number of HSCs, or an abnormally high number, and that would inform how you think about their disease risk,” Sankaran says. “ReDeeM provides a new lens through which to understand the clone dynamics of blood production, and how they might be altered in human health and diseases. Ultimately, we will be able to apply those lessons to patient care.”

Imaging method reveals new cells and structures in human brain tissue

Wed, 01/31/2024 - 2:00pm

Using a novel microscopy technique, MIT and Brigham and Women’s Hospital/Harvard Medical School researchers have imaged human brain tissue in greater detail than ever before, revealing cells and structures that were not previously visible.

Among their findings, the researchers discovered that some “low-grade” brain tumors contain more putative aggressive tumor cells than expected, suggesting that some of these tumors may be more aggressive than previously thought.

The researchers hope that this technique could eventually be deployed to diagnose tumors, generate more accurate prognoses, and help doctors choose treatments.

“We’re starting to see how important the interactions of neurons and synapses with the surrounding brain are to the growth and progression of tumors. A lot of those things we really couldn’t see with conventional tools, but now we have a tool to look at those tissues at the nanoscale and try to understand these interactions,” says Pablo Valdes, a former MIT postdoc who is now an assistant professor of neuroscience at the University of Texas Medical Branch and the lead author of the study.

Edward Boyden, the Y. Eva Tan Professor in Neurotechnology at MIT; a professor of biological engineering, media arts and sciences, and brain and cognitive sciences; a Howard Hughes Medical Institute investigator; and a member of MIT’s McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research; and E. Antonio Chiocca, a professor of neurosurgery at Harvard Medical School and chair of neurosurgery at Brigham and Women’s Hospital, are the senior authors of the study, which appears today in Science Translational Medicine.

Making molecules visible

The new imaging method is based on expansion microscopy, a technique developed in Boyden’s lab in 2015 based on a simple premise: Instead of using powerful, expensive microscopes to obtain high-resolution images, the researchers devised a way to expand the tissue itself, allowing it to be imaged at very high resolution with a regular light microscope.

The technique works by embedding the tissue into a polymer that swells when water is added, and then softening up and breaking apart the proteins that normally hold tissue together. Then, adding water swells the polymer, pulling all the proteins apart from each other. This tissue enlargement allows researchers to obtain images with a resolution of around 70 nanometers, which was previously possible only with very specialized and expensive microscopes such as scanning electron microscopes.

In 2017, the Boyden lab developed a way to expand preserved human tissue specimens, but the chemical reagents that they used also destroyed the proteins that the researchers were interested in labeling. By labeling the proteins with fluorescent antibodies before expansion, the proteins’ location and identity could be visualized after the expansion process was complete. However, the antibodies typically used for this kind of labeling can’t easily squeeze through densely packed tissue before it’s expanded.

So, for this study, the authors devised a different tissue-softening protocol that breaks up the tissue but preserves proteins in the sample. After the tissue is expanded, proteins can be labelled with commercially available fluorescent antibodies. The researchers then can perform several rounds of imaging, with three or four different proteins labeled in each round. This labelling of proteins enables many more structures to be imaged, because once the tissue is expanded, antibodies can squeeze through and label proteins they couldn’t previously reach.

“We open up the space between the proteins so that we can get antibodies into crowded spaces that we couldn’t otherwise,” Valdes says. “We saw that we could expand the tissue, we could decrowd the proteins, and we could image many, many proteins in the same tissue by doing multiple rounds of staining.”

Working with MIT Assistant Professor Deblina Sarkar, the researchers demonstrated a form of this “decrowding” in 2022 using mouse tissue.

The new study resulted in a decrowding technique for use with human brain tissue samples that are used in clinical settings for pathological diagnosis and to guide treatment decisions. These samples can be more difficult to work with because they are usually embedded in paraffin and treated with other chemicals that need to be broken down before the tissue can be expanded.

In this study, the researchers labeled up to 16 different molecules per tissue sample. The molecules they targeted include markers for a variety of structures, including axons and synapses, as well as markers that identify cell types such as astrocytes and cells that form blood vessels. They also labeled molecules linked to tumor aggressiveness and neurodegeneration.

Using this approach, the researchers analyzed healthy brain tissue, along with samples from patients with two types of glioma — high-grade glioblastoma, which is the most aggressive primary brain tumor, with a poor prognosis, and low-grade gliomas, which are considered less aggressive.

“We wanted to look at brain tumors so that we can understand them better at the nanoscale level, and by doing that, to be able to develop better treatments and diagnoses in the future. At this point, it was more developing a tool to be able to understand them better, because currently in neuro-oncology, people haven't done much in terms of super-resolution imaging,” Valdes says.

A diagnostic tool

To identify aggressive tumor cells in gliomas they studied, the researchers labeled vimentin, a protein that is found in highly aggressive glioblastomas. To their surprise, they found many more vimentin-expressing tumor cells in low-grade gliomas than had been seen using any other method.

“This tells us something about the biology of these tumors, specifically, how some of them probably have a more aggressive nature than you would suspect by doing standard staining techniques,” Valdes says.

When glioma patients undergo surgery, tumor samples are preserved and analyzed using immunohistochemistry staining, which can reveal certain markers of aggressiveness, including some of the markers analyzed in this study.   

“These are incurable brain cancers, and this type of discovery will allow us to figure out which cancer molecules to target so we can design better treatments. It also proves the profound impact of having clinicians like us at the Brigham and Women’s interacting with basic scientists such as Ed Boyden at MIT to discover new technologies that can improve patient lives,” Chiocca says. 

The researchers hope their expansion microscopy technique could allow doctors to learn much more about patients’ tumors, helping them to determine how aggressive the tumor is and guiding treatment choices. Valdes now plans to do a larger study of tumor types to try to establish diagnostic guidelines based on the tumor traits that can be revealed using this technique.

“Our hope is that this is going to be a diagnostic tool to pick up marker cells, interactions, and so on, that we couldn’t before,” he says. “It’s a practical tool that will help the clinical world of neuro-oncology and neuropathology look at neurological diseases at the nanoscale like never before, because fundamentally it’s a very simple tool to use.”

Boyden’s lab also plans to use this technique to study other aspects of brain function, in healthy and diseased tissue.

“Being able to do nanoimaging is important because biology is about nanoscale things — genes, gene products, biomolecules — and they interact over nanoscale distances,” Boyden says. “We can study all sorts of nanoscale interactions, including synaptic changes, immune interactions, and changes that occur during cancer and aging.”

The research was funded by K. Lisa Yang, the Howard Hughes Medical Institute, John Doerr, Open Philanthropy, the Bill and Melinda Gates Foundation, the Koch Institute Frontier Research Program, the National Institutes of Health, and the Neurosurgery Research and Education Foundation.

Pages