Feed aggregator

EPA approves waiver for California EV plan

ClimateWire News - Wed, 12/18/2024 - 10:07am
The rule would bar the sale of most new gas-powered cars in California after 2035.

Turning adversity into opportunity

MIT Latest News - Wed, 12/18/2024 - 9:00am

Sujood Eldouma always knew she loved math; she just didn’t know how to use it for good in the world. 

But after a personal and educational journey that took her from Sudan to Cairo to London, all while leveraging MIT Open Learning’s online educational resources, she finally knows the answer: data science.

An early love of data

Eldouma grew up in Omdurman, Sudan, with her parents and siblings. She always had an affinity for STEM subjects, and at the University of Khartoum she majored in electrical and electronic engineering with a focus in control and instrumentation engineering.

In her second year at university, Eldouma struggled with her first coding courses in C++ and C#, which are general-purpose programming languages. When a teaching assistant introduced Eldouma and her classmates to MIT OpenCourseWare for additional support, she promptly worked through OpenCourseWare’s C++ and C courses in tandem with her in-person classes. This began Eldouma’s ongoing connection with the open educational resources available through MIT Open Learning.

OpenCourseWare, part of MIT Open Learning, offers a free collection of materials from thousands of MIT courses, spanning the entire curriculum. To date, Eldouma has explored over 20 OpenCourseWare courses, and she says it is a resource she returns to regularly.

“We started watching the videos and reading the materials, and it made our lives easier,” says Eldouma. “I took many OpenCourseWare courses in parallel with my classes throughout my undergrad, because we still did the same material. OpenCourseWare courses are structured differently and have different resources and textbooks, but at the end of the day it’s the same content.”

For her graduation thesis, Eldouma did a project on disaster response and management in complex contexts, because at the time, Sudan was suffering from heavy floods and the country had limited resources to respond.

“That’s when I realized I really love data, and I wanted to explore that more,” she says.

While Eldouma loves math, she always wanted to find ways to use it for good. Through the early exposure to data science and statistical methods at her university, she saw how data science leverages math for real-world impact.

After graduation, she took a job at the DAL Group, the largest Sudanese conglomerate, where she helped to incorporate data science and new technologies to automate processes within the company. When civil war erupted in Sudan in April 2023, life as Eldouma knew it was turned upside down, and her family was forced to make the difficult choice to relocate to Egypt.

Purpose in adversity

Soon after relocating to Egypt, Eldouma lost her job and found herself struggling to find purpose in the life circumstances she had been handed. Due to visa restrictions, challenges getting right-to-work permits, and a complicated employment market in Egypt, she was also unable to find a new job.

“I was sort of in a depressive episode, because of all that was happening,” she reflects. “It just hit me that I lost everything that I know, everything that I love. I’m in a new country. I need to start from scratch.”

Around this time, a friend who knew Eldouma was curious about data science sent her the link to apply to the MIT Emerging Talent Certificate in Data and Computer Science. With less than 24 hours before the application deadline, Eldouma hit “Submit.”

Finding community and joy through learning

Part of MIT Open Learning, MIT Emerging Talent at the MIT Jameel World Education Lab (J-WEL) develops global education programs that target the needs of talented individuals from challenging economic and social circumstances by equipping them with the knowledge and tools to advance their education and careers.

The Certificate in Computer and Data Science is a year-long online learning program that follows an agile continuous education model. It incorporates computer science and data analysis coursework from MITx, professional skill building, experiential learning, apprenticeship options, and opportunities for networking with MIT’s global community. The program is targeted toward refugees, migrants, and first-generation low-income students from historically marginalized backgrounds and underserved communities worldwide.

Although Eldouma had used data science in her role at the DAL Group, she was happy to have a proper introduction to the field and to find joy in learning again. She also found community, support, and inspiration from her classmates who were connected to each other not just by their academic pursuits, but by their shared life challenges. The cohort of 100 students stayed in close contact through the program, both for casual conversation and for group work.

“In the final step of the Emerging Talent program, learners apply their computer and data knowledge in an experiential learning opportunity,” says Megan Mitchell, associate director for Pathways for Talent and acting director of J-WEL. “The experiential learning opportunity takes the form of an internship, apprenticeship, or an independent or collaborative project, and allows students to apply their knowledge in real-world settings and build practical skills.”

Determined to apply her newly acquired knowledge in a meaningful way, Eldouma and fellow displaced Sudanese classmates designed a project to help solve a problem in their home country. The group identified access to education as a major problem facing Sudanese people, with schooling disrupted due to the conflict. Focusing on the higher education audience, the group partnered with community platform Nas Al Sudan to create a centralized database where students can search for scholarships and other opportunities to continue their education.

Eldouma completed the MIT Emerging Talent program in June 2024 with a clear vision to pursue a career in data science, and the confidence to achieve that goal. In fact, she had already taken the steps to get there: halfway through the certificate program, she applied and was accepted to the MITx MicroMasters program in Statistics and Data Science at Open Learning and the London School of Economics (LSE) Masters of Science in Data Science.

In January 2024, Eldouma started the MicroMasters program with 12 of her Emerging Talent peers. While the MIT Emerging Talent program is focused on undergraduate-level, introductory computer and data science material, the MicroMasters program in Statistics and Data Science is graduate-level learning. MicroMasters programs are a series of courses that provide deep learning in a specific career field, and learners that successfully earn the credential may receive academic credit to universities around the world. This makes the credential a pathway to over 50 master’s degree programs and other advanced degrees, including at MIT. Eldouma believes that her experience in the MicroMasters courses prepared her well for the expectations of the LSE program.

After finishing the MicroMasters and LSE programs, Eldouma aspires to a career using data science to better understand what is happening on the African continent from an economic and social point of view. She hopes to contribute to solutions to conflicts across the region. And, someday, she hopes to move back to Sudan.

“My family’s roots are there. I have memories there,” she says. “I miss walking in the street and the background noise is the same language that I am thinking in. I don’t think I will ever find that in any place like Sudan.”

Musk wants to speed approval of self-driving cars. Is now his chance?

ClimateWire News - Wed, 12/18/2024 - 6:26am
Government watchdogs say Elon Musk's business interests could collide with his role in the incoming Trump administration.

DOGE is a mystery. Here are some answers.

ClimateWire News - Wed, 12/18/2024 - 6:25am
The so-called Department of Government Efficiency isn’t actually a department. But it could be a nonprofit, a commission or something else.

Michigan poised to subsidize data centers

ClimateWire News - Wed, 12/18/2024 - 6:21am
Environmental activists warn the tax breaks could bust the state’s climate goals.

Montana ‘stands ready’ to help Trump expand energy production, governor says

ClimateWire News - Wed, 12/18/2024 - 6:21am
Gov. Greg Gianforte said he spoke last week to Chris Wright, the president-elect’s pick to head the Department of Energy.

The under-the-radar California climate fight peaking as Trump looms

ClimateWire News - Wed, 12/18/2024 - 6:20am
State regulators announced last week that they would dial back enforcement of a law that requires large companies to report their greenhouse gas emissions.

Can UN summits save the planet? Faltering talks raise questions.

ClimateWire News - Wed, 12/18/2024 - 6:19am
Experts call multilateral environmentalism broken because of a cumbersome consensus process, the power of the fossil fuel industry, geopolitical changes and the massive size of the problems they are trying to fix.

Polish central bank calls on lenders to assess climate change risk

ClimateWire News - Wed, 12/18/2024 - 6:18am
Commercial banks’ exposure to industries sensitive to climate change stands at around $48 billion, says a report.

France rushes aid to Mayotte after Cyclone Chido leaves hundreds feared dead

ClimateWire News - Wed, 12/18/2024 - 6:17am
The cyclone leveled entire neighborhoods Saturday when it hit Mayotte, the poorest territory of France and, by extension, the European Union.

Adverse health risks to religious groups during heatwaves

Nature Climate Change - Wed, 12/18/2024 - 12:00am

Nature Climate Change, Published online: 18 December 2024; doi:10.1038/s41558-024-02207-8

Adverse health risks to religious groups during heatwaves

Humid heat exceeds human tolerance limits and causes mass mortality

Nature Climate Change - Wed, 12/18/2024 - 12:00am

Nature Climate Change, Published online: 18 December 2024; doi:10.1038/s41558-024-02215-8

The hottest boreal summer on record has driven widespread humid heat mortality across every continent of the Northern Hemisphere. With critical physiological limits to human heat tolerance drawing ever closer, this Comment highlights the urgent need to limit further climate warming and emphasizes the adaptation challenge ahead.

Miracle, or marginal gain?

MIT Latest News - Wed, 12/18/2024 - 12:00am

From 1960 to 1989, South Korea experienced a famous economic boom, with real GDP per capita growing by an annual average of 6.82 percent. Many observers have attributed this to industrial policy, the practice of giving government support to specific industrial sectors. In this case, industrial policy is often thought to have powered a generation of growth.

Did it, though? An innovative study by four scholars, including two MIT economists, suggests that overall GDP growth attributable to industrial policy is relatively limited. Using global trade data to evaluate changes in industrial capacity within countries, the research finds that industrial policy raises long-run GDP by only 1.08 percent in generally favorable circumstances, and up to 4.06 percent if additional factors are aligned — a distinctly smaller gain than an annually compounding rate of 6.82 percent.

The study is meaningful not just because of the bottom-line numbers, but for the reasons behind them. The research indicates, for instance, that local consumer demand can curb the impact of industrial policy. Even when a country alters its output, demand for those goods may not shift as extensively, putting a ceiling on directed growth.

“In most cases, the gains are not going to be enormous,” says MIT economist Arnaud Costinot, co-author of a new paper detailing the research. “They are there, but in terms of magnitude, the gains are nowhere near the full scope of the South Korean experience, which is the poster child for an industrial policy success story.”

The research combines empirical data and economic theory, using data to assess “textbook” conditions where industrial policy would seem most merited.

“Many think that, for countries like China, Japan, and other East Asian giants, and perhaps even the U.S., some form of industrial policy played a big role in their success stories,” says Dave Donaldson, an MIT economist and another co-author of the paper. “The question is whether the textbook argument for industrial policy fully explains those successes, and our punchline would be, no, we don’t think it can.”

The paper, “The Textbook Case for Industrial Policy: Theory Meets Data,” appears in the Journal of Political Economy. The authors are Dominick Bartelme, an independent researcher; Costinot, the Ford Professor of Economics in MIT’s Department of Economics; Donaldson, the Class of 1949 Professor of Economics in MIT’s Department of Economics; and Andres Rodriguez-Clare, the Edward G. and Nancy S. Jordan Professor of Economics at the University of California at Berkeley.

Reverse-engineering new insights

Opponents of industrial policy have long advocated for a more market-centered approach to economics. And yet, over the last several decades globally, even where political leaders publicly back a laissez-faire approach, many governments have still found reasons to support particular industries. Beyond that, people have long cited East Asia’s economic rise as a point in favor of industrial policy.

The scholars say the “textbook case” for industrial policy is a scenario where some economic sectors are subject to external economies of scale but others are not.

That means firms within an industry have an external effect on the productivity of other firms in that same industry, which could happen via the spread of knowledge.

If an industry becomes both bigger and more productive, it may make cheaper goods that can be exported more competitively. The study is based on the insight that global trade statistics can tell us something important about the changes in industry-specific capacities within countries. That — combined with other metrics about national economies — allows the economists to scrutinize the overall gains deriving from those changes and to assess the possible scope of industrial policies.

As Donaldson explains, “An empirical lever here is to ask: If something makes a country’s sectors bigger, do they look more productive? If so, they would start exporting more to other countries. We reverse-engineer that.”

Costinot adds: “We are using that idea that if productivity is going up, that should be reflected in export patterns. The smoking gun for the existence of scale effects is that larger domestic markets go hand in hand with more exports.”

Ultimately, the scholars analyzed data for 61 countries at different points in time over the last few decades, with exports for 15 manufacturing sectors included. The figure of 1.08 percent long-run GDP gains is an average, with countries realizing gains ranging from 0.59 percent to 2.06 percent annually under favorable conditions. Smaller countries that are open to trade may realize larger proportional effects as well.

“We’re doing this global analysis and trying to be right on average,” Donaldson says. “It’s possible there are larger gains from industrial policy in particular settings.”

The study also suggests countries have greater room to redirect economic activity, based on varying levels of productivity among industries, than they can realistically enact due to relatively fixed demand. The paper estimates that if countries could fully reallocate workers to the industry with the largest room to grow, long-run welfare gains would be as high as 12.4 percent.

But that never happens. Suppose a country’s industrial policy helped one sector double in size while becoming 20 percent more productive. In theory, the government should continue to back that industry. In reality, growth would slow as markets became saturated.

“That would be a pretty big scale effect,” Donaldson says. “But notice that in doubling the size of an industry, many forces would push back. Maybe consumers don’t want to consume twice as many manufactured goods. Just because there are large spillovers in productivity doesn’t mean optimally designed industrial policy has huge effects. It has to be in a world where people want those goods.”

Place-based policy

Costinot and Donaldson both emphasize that this study does not address all the possible factors that can be weighed either in favor of industrial policy or against it. Some governments might favor industrial policy as a way of evening out wage distributions and wealth inequality, fixing other market failures such as environmental damages or furthering strategic geopolitical goals. In the U.S., industrial policy has sometimes been viewed as a way of revitalizing recently deindustrialized areas while reskilling workers.

In charting the limits on industrial policy stemming from fairly fixed demand, the study touches on still bigger issues concerning global demand and restrictions on growth of any kind. Without increasing demand, enterprise of all kinds encounters size limits.

The outcome of the paper, in any case, is not necessarily a final conclusion about industrial policy, but deeper insight into its dynamics. As the authors note, the findings leave open the possibility that targeted interventions in specific sectors and specific regions could be very beneficial, when policy and trade conditions are right. Policymakers should grasp the amount of growth likely to result, however.

As Costinot notes, “The conclusion is not that there is no potential gain from industrial policy, but just that the textbook case doesn’t seem to be there.” At least, not to the extent some have assumed.

The research was supported, in part, by the U.S. National Science Foundation.

When MIT’s interdisciplinary NEET program is a perfect fit

MIT Latest News - Tue, 12/17/2024 - 2:50pm

At an early age, Katie Spivakovsky learned to study the world from different angles. Dinner-table conversations at her family’s home in Menlo Park, California, often leaned toward topics like the Maillard reaction — the chemistry behind food browning — or the fascinating mysteries of prime numbers. Spivakovsky’s parents, one of whom studied physical chemistry and the other statistics, fostered a love of knowledge that crossed disciplines. 

In high school, Spivakovsky explored it all, from classical literature to computer science. She knew she wanted an undergraduate experience that encouraged her broad interests, a place where every field was within reach. 

“MIT immediately stood out,” Spivakovsky says. “But it was specifically the existence of New Engineering Education Transformation (NEET) — a truly unique initiative that immerses undergraduates in interdisciplinary opportunities both within and beyond campus — that solidified my belief that MIT was the perfect fit for me.”  

NEET is a cross-departmental education program that empowers undergraduates to tackle the pressing challenges of the 21st century through interdisciplinary learning. Starting in their sophomore year, NEET scholars choose from one of four domains of study, or “threads:” Autonomous Machines, Climate and Sustainability Systems, Digital Cities, or Living Machines. After the typical four years, NEET scholars graduate with a degree in their major and a NEET certificate, equipping them with both depth in their chosen field and the ability to work in, and drive impact across, multiple domains. 

Spivakovsky is now a junior double-majoring in biological engineering and artificial intelligence and decision-making, with a minor in mathematics. At a time when fields like biology and computer science are merging like never before, she describes herself as “interested in leveraging engineering and computational tools to discover new biomedical insights” — a central theme of NEET’s Living Machines thread, in which she is now enrolled. 

“NEET is about more than engineering,” says Amitava “Babi” Mitra, NEET founding executive director. “It’s about nurturing young engineers who dream big, value collaboration, and are ready to tackle the world’s toughest challenges with heart and curiosity. Watching students like Katie thrive is why this program matters so deeply.”  

Spivakovsky’s achievements while at MIT already have a global reach. In 2023, she led an undergraduate team at the International Genetically Engineered Machine (iGEM) competition in Paris, France, where they presented a proof of concept for a therapy to treat cancer cachexia. Cachexia is a fat- and muscle-wasting condition with no FDA-approved treatment. The condition affects 80 percent of late-stage cancer patients and is responsible for 30 percent of cancer deaths. Spivakovsky’s team won a silver medal for proposing the engineering of macrophages to remove excess interleukin-6, a pro-inflammatory protein overproduced in cachexia patients, and their research was later published in MIT’s Undergraduate Research Journal, an honor she says was “unreal and humbling.”  

Spivakovsky works as a student researcher in the BioNanoLab of Mark Bathe, professor of biological engineering and former NEET faculty director. The lab uses DNA and RNA to engineer nanoscale materials for such uses as therapeutics and computing. Her focus is validating nucleic acid nanoparticles for use in therapeutics. 

According to Bathe, “Katie shows tremendous promise as a scientific leader — she brings unparalleled passion and creativity to her project on making novel vaccines with a depth of knowledge in both biology and computation that is truly unmatched.” 

Spivakovsky says class 20.054 (Living Machines Research Immersion), which she is taking in the NEET program, complements her work in Bathe’s lab and provides well-rounded experience through workshops that emphasize scientific communication, staying abreast of scientific literature, and research progress updates. “I’m interested in a range of subjects and find that switching between them helps keep things fresh,” she says.  

Her interdisciplinary drive took her to Merck over the summer, where Spivakovsky interned on the Modeling and Informatics team. While contributing to the development of a drug to deactivate a cancer-causing protein, she says she learned to use computational chemistry tools and developed geometric analysis techniques to identify locations on the protein where drug molecules might be able to bind.  

“My team continues to actively use the software I developed and the insights I gained through my work,” Spivakovsky says. “The target protein has an enormous patient population, so I am hopeful that within the next decade, drugs will enter the market, and my small contribution may make a difference in many lives.”  

As she looks toward her future, Spivakovsky envisions herself at the intersection of artificial intelligence and biology, ideally in a role that combines wet lab with computational research. “I can’t see myself in a career entirely devoid of one or the other,” she says. “This incredible synergy is where I feel most inspired.”   

Wherever Spivakovsky’s curiosity leads her next, she says one thing is certain: “NEET has really helped my development as a scientist.” 

3 Questions: Tracking MIT graduates’ career trajectories

MIT Latest News - Tue, 12/17/2024 - 2:35pm

In a fall letter to MIT alumni, President Sally Kornbluth wrote: “[T]he world has never been more ready to reward our graduates for what they know — and know how to do.” During her tenure leading MIT Career Advising and Professional Development (CAPD), Deborah Liverman has seen firsthand how — and how well — MIT undergraduate and graduate students leverage their education to make an impact around the globe in academia, industry, entrepreneurship, medicine, government and nonprofits, and other professions. Here, Liverman shares her observations about trends in students’ career paths and the complexities of the job market they must navigate along the way.

Q: How do our students fare when they graduate from MIT?

A: We routinely survey our undergraduates and graduate students to track post-graduation outcomes, so fortunately we have a wealth of data. And ultimately, this enables us to stay on top of changes from year to year and to serve our students better.

The short answer is that our students fare exceptionally well when they leave the Institute! In our 2023 Graduating Student Survey, which is an exit survey for bachelor’s degree and master’s degree students, 49 percent of bachelor’s respondents and 79 percent of master’s respondents entered the workforce after graduating, and 43 percent and 14 percent started graduate school programs, respectively. Among those seeking immediate employment, 92 percent of bachelor’s and 87 percent of master’s degree students reported obtaining a job within three months of graduation.

What is notable, and frankly, wonderful, is that these two cohorts really took advantage of the rich ecosystem of experiential learning opportunities we have at MIT. The majority of Class of 2023 seniors participated in some form of experiential learning before graduation: 94 percent of them had a UROP [Undergraduate Research Opportunities Program], 75 percent interned, 66 percent taught or tutored, and 38 percent engaged with or mentored at campus makerspaces. Among master’s degree graduates in 2023, 56 percent interned, 45 percent taught or tutored, and 30 percent took part in entrepreneurial ventures or activities. About 47 percent of bachelor’s graduates said that a previous internship or externship led to the offer that they accepted, and 46 percent of master’s graduates are a founding member of a company.

We conduct a separate survey for doctoral students. I think there’s a common misperception that most of our PhD students go into academia. But a sizable portion choose not to stay in the academy. According to our 2024 Doctoral Exit Survey, 41 percent of graduates planned to go into industry. As of the survey date, of those who were going on to employment, 76 percent had signed a contract or made a definite commitment to a postdoc or other work, and only 9 percent were seeking a position but had no specific prospects.

A cohort of students, as well as some alumni, work with CAPD’s Prehealth Advising staff to apply for medical school. Last year we supported 73 students and alumni consisting of 25 undergrads, eight graduate students, and 40 alumni, with an acceptance rate of 79 percent — well above the national rate of 41 percent.

Q: How does CAPD work with students and postdocs to cultivate their professional development and help them evaluate their career options?

A: As you might expect, the career and graduate school landscape is constantly changing. In turn, CAPD strives to continuously evolve, so that we can best support and prepare our students. It certainly keeps us on our feet!

One of the things we have changed recently is our fundamental approach to working with students. We migrated our advising model from a major-specific focus to instead center on career interest areas. That allows us to prioritize skills and use a cross-disciplinary approach to advising students. So when an advisor sits down (or Zooms) with a student, that one-on-one session creates plenty of space to discuss a student’s individual values, goals, and other career-decision influencing factors.

I would say that another area we have been heavily focused on is providing new ways for students to explore careers. To that end, we developed two roles — an assistant director of career exploration and an assistant director of career prototype — to support new initiatives. And we provide career exploration fellowships and grants for undergraduate and graduate students so that they can explore fields that may be niche to MIT.

Career exploration is really important, but we want to meet students and postdocs where they are. We know they are incredibly busy at MIT, so our goal is to provide a variety of formats to make that possible, from a one-hour workshop or speaker, to a daylong shadowing experience, or a longer-term internship. For example, we partnered with departments to create the Career Exploration Series and the Infinite Careers speaker series, where we show students various avenues to get to a career. We have also created more opportunities to interact with alumni or other employers through one-day shadowing opportunities, micro-internships, internships, and employer coffee chats. The Prehealth Advising program I mentioned before offers many avenues to explore the field of medicine, so students can really make informed decisions about the path they want to pursue.

We are also looking at our existing programming to identify opportunities to build in career exploration, such as the Fall Career Fair. We have been working on identifying employers who are open to having career exploration conversations with — or hiring — first-year undergraduates, with access to these employers 30 minutes before the start of the fair. This year, the fair drew 4,400 candidates (students, postdocs, and alumni) and 180 employers, so it’s a great opportunity to leverage an event we already have in place and make it even more fruitful for both students and employers.

I do want to underscore that career exploration is just as important for graduate students as it is for undergraduates. In the doctoral exit survey I mentioned, 37 percent of 2024 graduates said they had changed their mind about the type of employer for whom they expected to work since entering their graduate program, and 38 percent had changed their mind about the type of position they expected to have. CAPD has developed exploration programming geared specifically for them, such as the CHAOS Process and our Graduate Student Professional Development offerings.

Q: What kinds of trends are you seeing in the current job market? And as students receive job offers, how do they weigh factors like the ethical considerations of working for a certain company or industry, the political landscape in the U.S. and abroad, the climate impact of a certain company or industry, or other issues?

A: Well, one notable trend is just the sheer volume of job applications. With platforms like LinkedIn’s Easy Apply, it’s easier for job seekers to apply to hundreds of jobs at once. Employers and organizations have more candidates, so applicants have to do more to stand out. Companies that, in the past, have had to seek out candidates are now deciding the best use of their recruiting efforts.

I would say the current job market is mixed. MIT students, graduates, and postdocs have experienced delayed job offers and starting dates pushed back in consulting and some tech firms. Companies are being intentional about recruiting and hiring college graduates. So students need to keep an open mind and not have their heart set on a particular employer. And if that employer isn’t hiring, then they may have to optimize their job search and consider other opportunities where they can gain experience.

On a more granular level, we do see trends in certain fields. Biotech has had a tough year, but there’s an uptick in opportunities in government, space, aerospace, and in the climate/sustainability and energy sectors. Companies are increasingly adopting AI in their business practices, so they’re hiring in that area. And financial services is a hot market for MIT candidates with strong technical skills.

As for how a student evaluates a job offer, according to the Graduating Student Survey, students look at many factors, including the job content, fit with the employer’s culture, opportunity for career advancement, and of course salary. However, students are also interested in exploring how an organization fits with their values.

CAPD provides various opportunities and resources to help them zero in on what matters most to them, from on-demand resources to one-on-one sessions with our advisors. As they research potential companies, we encourage them to make the most of career fairs and recruiting events. Throughout the academic year, MIT hosts and collaborates on over a dozen career fairs and large recruiting events. Companies are invited based on MIT candidates’ interests. The variety of opportunities means students can connect with different industries, explore careers, and apply to internships, jobs and research opportunities.

We also recommend that they take full advantage of MIT’s curated instance of Handshake, an online recruiting platform for higher education students and alumni. CAPD has collaborated with offices and groups to create filters and identifiers in Handshake to help candidates decide what is important to them, such as a company’s commitment to inclusive practices or their sustainability initiatives.

As advisors, we encourage each student to think about which factors are important for them when evaluating job offers and determine if an employer aligns with their values and goals. And we encourage and honor each student’s right to include those values and goals in their career decision-making process. Accepting a job is a very personal decision, and we are here to support each student every step of the way.

MIT spinout Commonwealth Fusion Systems unveils plans for the world’s first fusion power plant

MIT Latest News - Tue, 12/17/2024 - 2:00pm

America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world’s first grid-scale fusion power plant in Chesterfield County, Virginia.

The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion — the reaction that powers the sun — since its founders first conceived of their approach in an MIT classroom in 2012. CFS is now commercializing a suite of advanced technologies developed in MIT research labs.

“This moment exemplifies the power of MIT’s mission, which is to create knowledge that serves the nation and the world, whether via the classroom, the lab, or out in communities,” MIT Vice President for Research Ian Waitz says. “From student coursework 12 years ago to today’s announcement of the siting in Virginia of the world’s first fusion power plant, progress has been amazingly rapid. At the same time, we owe this progress to over 65 years of sustained investment by the U.S. federal government in basic science and energy research.”

The new fusion power plant, named ARC, is expected to come online in the early 2030s and generate about 400 megawatts of clean, carbon-free electricity — enough energy to power large industrial sites or about 150,000 homes.

The plant will be built at the James River Industrial Park outside of Richmond through a nonfinancial collaboration with Dominion Energy Virginia, which will provide development and technical expertise along with leasing rights for the site. CFS will independently finance, build, own, and operate the power plant.

The plant will support Virginia’s economic and clean energy goals by generating what is expected to be billions of dollars in economic development and hundreds of jobs during its construction and long-term operation.

More broadly, ARC will position the U.S. to lead the world in harnessing a new form of safe and reliable energy that could prove critical for economic prosperity and national security, including for meeting increasing electricity demands driven by needs like artificial intelligence.

“This will be a watershed moment for fusion,” says CFS co-founder Dennis Whyte, the Hitachi America Professor of Engineering at MIT. “It sets the pace in the race toward commercial fusion power plants. The ambition is to build thousands of these power plants and to change the world.”

Fusion can generate energy from abundant fuels like hydrogen and lithium isotopes, which can be sourced from seawater, and leave behind no emissions or toxic waste. However, harnessing fusion in a way that produces more power than it takes in has proven difficult because of the high temperatures needed to create and maintain the fusion reaction. Over the course of decades, scientists and engineers have worked to make the dream of fusion power plants a reality.

In 2012, teaching the MIT class 22.63 (Principles of Fusion Engineering), Whyte challenged a group of graduate students to design a fusion device that would use a new kind of superconducting magnet to confine the plasma used in the reaction. It turned out the magnets enabled a more compact and economic reactor design. When Whyte reviewed his students’ work, he realized that could mean a new development path for fusion.

Since then, a huge amount of capital and expertise has rushed into the once fledgling fusion industry. Today there are dozens of private fusion companies around the world racing to develop the first net-energy fusion power plants, many utilizing the new superconducting magnets. CFS, which Whyte founded with several students from his class, has attracted more than $2 billion in funding.

“It all started with that class, where our ideas kept evolving as we challenged the standard assumptions that came with fusion,” Whyte says. “We had this new superconducting technology, so much of the common wisdom was no longer valid. It was a perfect forum for students, who can challenge the status quo.”

Since the company’s founding in 2017, it has collaborated with researchers in MIT’s Plasma Science and Fusion Center (PFSC) on a range of initiatives, from validating the underlying plasma physics for the first demonstration machine to breaking records with a new kind of magnet to be used in commercial fusion power plants. Each piece of progress moves the U.S. closer to harnessing a revolutionary new energy source.

CFS is currently completing development of its fusion demonstration machine, SPARC, at its headquarters in Devens, Massachusetts. SPARC is expected to produce its first plasma in 2026 and net fusion energy shortly after, demonstrating for the first time a commercially relevant design that will produce more power than it consumes. SPARC will pave the way for ARC, which is expected to deliver power to the grid in the early 2030s.

“There’s more challenging engineering and science to be done in this field, and we’re very enthusiastic about the progress that CFS and the researchers on our campus are making on those problems,” Waitz says. “We’re in a ‘hockey stick’ moment in fusion energy, where things are moving incredibly quickly now. On the other hand, we can’t forget about the much longer part of that hockey stick, the sustained support for very complex, fundamental research that underlies great innovations. If we’re going to continue to lead the world in these cutting-edge technologies, continued investment in those areas will be crucial.”

10 Resources for Protecting Your Digital Security | EFFector 36.15

EFF: Updates - Tue, 12/17/2024 - 1:42pm

Get a head-start on your New Year's resolution to stay up-to-date on digital rights news by subscribing to EFF's EFFector newsletter! 

This edition of the newsletter covers our top ten digital security resources for those concerned about the incoming administration, a new bill that could put an end to SLAPP lawsuits, and our recent amicus brief arguing that device searches at the border require a warrant (we've been arguing this for a long time).

You can read the full newsletter here, and even get future editions directly to your inbox when you subscribe! Additionally, we've got an audio edition of EFFector on the Internet Archive, or you can view it by clicking the button below:

LISTEN ON YouTube

EFFECTOR 36.15 - 10 Resources for Protecting Your Digital Security

Since 1990 EFF has published EFFector to help keep readers on the bleeding edge of their digital rights. We know that the intersection of technology, civil liberties, human rights, and the law can be complicated, so EFFector is a great way to stay on top of things. The newsletter is chock full of links to updates, announcements, blog posts, and other stories to help keep readers—and listeners—up to date on the movement to protect online privacy and free expression. 

Thank you to the supporters around the world who make our work possible! If you're not a member yet, join EFF today to help us fight for a brighter digital future.

Hacking Digital License Plates

Schneier on Security - Tue, 12/17/2024 - 12:04pm

Not everything needs to be digital and “smart.” License plates, for example:

Josep Rodriguez, a researcher at security firm IOActive, has revealed a technique to “jailbreak” digital license plates sold by Reviver, the leading vendor of those plates in the US with 65,000 plates already sold. By removing a sticker on the back of the plate and attaching a cable to its internal connectors, he’s able to rewrite a Reviver plate’s firmware in a matter of minutes. Then, with that custom firmware installed, the jailbroken license plate can receive commands via Bluetooth from a smartphone app to instantly change its display to show any characters or image...

Why Biden might defy Trump with stronger climate goals

ClimateWire News - Tue, 12/17/2024 - 6:22am
The White House is considering whether to release new targets for carbon reductions, even though they could be jettisoned by the next president.

Supreme Court NEPA ruling could target landmark climate case

ClimateWire News - Tue, 12/17/2024 - 6:21am
Some justices appeared interested in taking aim at D.C. Circuit precedent as they decide whether to limit National Environmetal Policy Act reviews.

Pages