Feed aggregator

Waianae, Hawaii, residents fear their area may be the next Lahaina

ClimateWire News - Tue, 07/15/2025 - 6:52am
The Oahu town has much in common with the Maui destroyed by a massive wildfire in August 2023.

Sand and dust storms affect 330M people in 150 countries, UN says

ClimateWire News - Tue, 07/15/2025 - 6:51am
In the Middle East and North Africa, the annual cost of dealing with dust and sand storms is $150 billion, roughly 2.5 percent of GDP.

Climate alliance for banks sees another big departure

ClimateWire News - Tue, 07/15/2025 - 6:50am
With London-based HSBC Holdings now no longer a member of the Net-Zero Banking Alliance, the commitment of other lenders may now be questioned.

Report from the Cambridge Cybercrime Conference

Schneier on Security - Mon, 07/14/2025 - 2:46pm

The Cambridge Cybercrime Conference was held on 23 June. Summaries of the presentations are here.

Five MIT faculty elected to the National Academy of Sciences for 2025

MIT Latest News - Mon, 07/14/2025 - 2:45pm

The National Academy of Sciences (NAS) has elected 120 members and 30 international members, including five MIT faculty members and 13 MIT alumni. Professors Rodney Brooks, Parag Pathak, Scott Sheffield, Benjamin Weiss, and Yukiko Yamashita were elected in recognition of their “distinguished and continuing achievements in original research.” Membership to the National Academy of Sciences is one of the highest honors a scientist can receive in their career.

Elected MIT alumni include: David Altshuler ’86, Rafael Camerini-Otero ’66, Kathleen Collins PhD ’92, George Daley PhD ’89, Scott Doney PhD ’91, John Doyle PhD ’91, Jonathan Ellman ’84, Shanhui Fan PhD ’97, Julia Greer ’97, Greg Lemke ’78, Stanley Perlman PhD ’72, David Reichman PhD ’97, and Risa Wechsler ’96. 

Those elected this year bring the total number of active members to 2,662, with 556 international members. The NAS is a private, nonprofit institution that was established under a congressional charter signed by President Abraham Lincoln in 1863. It recognizes achievement in science by election to membership, and — with the National Academy of Engineering and the National Academy of Medicine — provides science, engineering, and health policy advice to the federal government and other organizations.

Rodney Brooks

Rodney A. Brooks is the Panasonic Professor of Robotics Emeritus at MIT and the chief technical officer and co-founder of Robust AI. Previously, he was founder, chair, and CTO of Rethink Robotics and founder and CTO of iRobot Corp. He is also the former director of the MIT Artificial Intelligence Laboratory and the MIT Computer Science and Artificial Intelligence Laboratory. Brooks received degrees in pure mathematics from the Flinders University of South Australia and a PhD in computer science from Stanford University in 1981. He held research positions at Carnegie Mellon University and MIT, and a faculty position at Stanford before joining the faculty of MIT in 1984.

Brooks’ research is concerned with both the engineering of intelligent robots to operate in unstructured environments, and with understanding human intelligence through building humanoid robots. He has published papers and books in model-based computer vision, path planning, uncertainty analysis, robot assembly, active vision, autonomous robots, micro-robots, micro-actuators, planetary exploration, representation, artificial life, humanoid robots, and compiler design.

Brooks is a member of the National Academy of Engineering, a founding fellow of the Association for the Advancement of Artificial Intelligence, a fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, the Association for Computing Machinery, a foreign fellow of The Australian Academy of Technological Sciences and Engineering, and a corresponding member of the Australian Academy of Science. He won the Computers and Thought Award at the 1991 International Joint Conference on Artificial Intelligence, and the IEEE Founders Medal in 2023.

Parag Pathak

Parag Pathak is the Class of 1922 Professor of Economics and a founder and director of MIT’s Blueprint Labs. He joined the MIT faculty in 2008 after completing his PhD in business economics and his master’s and bachelor’s degrees in applied mathematics, all at Harvard University.

Pathak is best known for his work on market design and education. His research has informed student placement and school choice mechanisms across the United States, including in Boston, New York City, Chicago, and Washington, and his recent work applies ideas from market design to the rationing of vital medical resources. Pathak has also authored leading studies on school quality, charter schools, and affirmative action. In urban economics, he has measured the effects of foreclosures on house prices and how the housing market reacted to the end of rent control in Cambridge, Massachusetts.

Pathak’s research on market design was recognized with the 2018 John Bates Clark Medal, given by the American Economic Association to the economist under 40 whose work is judged to have made the most significant contribution to the field. He is a fellow of the American Academy of Arts and Sciences, the Econometric Society, and the Society for the Advancement of Economic Theory. Pathak is also the founding co-director of the market design working group at the National Bureau of Economic Research, and a co-founder of Avela Education.

Scott Sheffield

Scott Sheffield, Leighton Family Professor of Mathematics, joined the MIT faculty in 2008 after a faculty appointment at the Courant Institute at New York University. He received a PhD in mathematics from Stanford University in 2003 under the supervision of Amir Dembo, and completed BA and MA degrees in mathematics from Harvard University in 1998.

Sheffield is a probability theorist, working on geometrical questions that arise in such areas as statistical physics, game theory, and metric spaces, as well as long-standing problems in percolation theory and the theory of random surfaces.

In 2017, Sheffield received the Clay Research Award with Jason Miller, “in recognition of their groundbreaking and conceptually novel work on the geometry of Gaussian free field and its application to the solution of open problems in the theory of two-dimensional random structures.” In 2023, he received the Leonard Eisenbud Prize with Jason Miller “for works on random two-dimensional geometries, and in particular on Liouville Quantum Gravity.” Later in 2023, Sheffield received the Frontiers of Science Award with Jason Miller for the paper “Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric.” Sheffield is a fellow of the American Academy of Arts and Science.

Benjamin Weiss

Benjamin Weiss is the Robert R. Schrock Professor of Earth and Planetary Sciences. He studied physics at Amherst College as an undergraduate and went on to study planetary science and geology at Caltech, where he earned a master’s degree in 2001 and PhD in 2003. Weiss’ doctoral dissertation on Martian meteorite ALH 84001 revealed records of the ancient Martian climate and magnetic field, and provided evidence some meteorites could transfer materials from Mars to Earth without heat-sterilization. Weiss became a member of the Department of Earth, Atmospheric and Planetary Sciences faculty in 2004 and is currently chair of the Program in Planetary Science.

A specialist in magnetometry, Weiss seeks to understand the formation and evolution of the Earth, terrestrial planets, and small solar system bodies through laboratory analysis, spacecraft observations, and fieldwork. He is known for key insights into the history of our solar system, including discoveries about the early nebular magnetic field, the moon’s long-lived core dynamo, and asteroids that generated core dynamos in the past. In addition to leadership roles on current, active NASA missions — as deputy principal investigator for Psyche, and co-investigator for Mars Perseverance and Europa Clipper — Weiss has also been part of science teams for the SpaceIL Beresheet, JAXA Hayabusa 2, and ESA Rosetta spacecraft.

As principal investigator of the MIT Planetary Magnetism Laboratory, Weiss works to develop high-sensitivity, high-resolution techniques in magnetic microscopy to image the magnetic fields embedded in rock samples collected from meteorites, the lunar surface, and sites around the Earth. Studying these magnetic signatures can help answer questions about the conditions of the early solar system, past climates on Earth and Mars, and factors that promote habitability.

Yukiko Yamashita

Yukiko Yamashita is a professor of biology at MIT, a core member of the Whitehead Institute for Biomedical Research, and an investigator at the Howard Hughes Medical Institute (HHMI). Yamashita earned her BS in biology in 1994 and her PhD in biophysics in 1999 from Kyoto University. From 2001 to 2006, she did postdoctoral research at Stanford University. She was appointed to the University of Michigan faculty in 2007 and was named an HHMI Investigator in 2014. She became a member of the Whitehead Institute and a professor of biology at MIT in 2020.

Yukiko Yamashita studies two fundamental aspects of multicellular organisms: how cell fates are diversified via asymmetric cell division, and how genetic information is transmitted through generations via the germline.

Two remarkable feats of multicellular organisms are generation of many distinct cell types via asymmetric cell division and transmission of the germline genome to the next generation, essentially in eternity. Studying these processes using the Drosophila male germline as a model system has led us to venture into new areas of study, such as functions of satellite DNA, “genomic junk,” and how they might be involved in speciation.

Yamashita is a member of the American Academy of Arts and Sciences, a fellow of the American Society for Cell Biology, and the winner of the Tsuneko and Reiji Okazaki Award in 2016. She was named a MacArthur Fellow in 2011.

Scientists discover compounds that help cells fight a wide range of viruses

MIT Latest News - Mon, 07/14/2025 - 7:00am

Researchers at MIT and other institutions have identified compounds that can fight off viral infection by activating a defense pathway inside host cells. These compounds, they believe, could be used as antiviral drugs that work against not just one but any kind of virus.

The researchers identified these compounds, which activate a host cell defense system known as the integrated stress response pathway, in a screen of nearly 400,000 molecules. In tests in human cells, the researchers showed that the compounds help cells fend off infection from RSV, herpes virus, and Zika virus. They also proved effective in combating herpes infection in a mouse model.

The research team now plans to test the compounds against additional viruses, in hopes of developing them for eventual clinical trials.

“We’re very excited about this work, which allows us to harness the stress response of the host cells to arrive at a means to identify and develop broad-spectrum antivirals,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering.

Collins and Maxwell Wilson, an associate professor of molecular biology at the University of California, Santa Barbara and chief scientific officer of Integrated Biosciences, are the senior authors of the new study, which appears in Cell. Felix Wong, a former MIT postdoc and chief executive officer of Integrated Biosciences, is the lead author of the paper. In addition to MIT, UCSB, and Integrated Biosciences, the research team also includes scientists from Illumina Ventures and Princeton University.

Boosting cell defense

In human cells, the integrated stress response pathway is turned on in response to viral infection as well as other types of stress such as starvation. During viral infection, the pathway is triggered by double-stranded RNA, a molecule produced during the replication cycle of viruses. When that RNA is detected, the cell shuts down protein synthesis, which blocks the virus from producing the proteins it needs to replicate.

Compounds that boost this pathway, the researchers believe, could be good candidates for new antiviral drugs that could combat any type of virus.

“Typically, how antivirals are developed is that you develop one antiviral for one specific virus,” Wong says. “In this case, we hypothesized that being able to modulate the host cell stress response might give us a new class of broad-spectrum antivirals — compounds that directly act on the host cells to alter something fundamental about how all viruses replicate.”

To help them identify compounds that would enhance the activity of this pathway during viral infection, the researchers invented a novel optogenetic screen. Optogenetics is a bioengineering technique that allows researchers to insert light-sensitive proteins into the genome of a cell. In this case, the researchers engineered modifications to a protein called PKR, which turns on the stress pathway, so that they could turn it on with light.

Using this technique, the researchers screened a library of nearly 400,000 commercially available and proprietary chemical compounds. Each of these compounds was applied to human cells as the cells were also exposed to blue light, which simulated viral infection by activating PKR.

By measuring the cells’ survival rates, the researchers could determine which compounds boosted activation of the pathway and amplified the cells’ ability to shut down viral reproduction. This screen yielded about 3,500 compounds with potential antiviral activity, which were evaluated further.

“If the pathway were turned on in response to viral infection, what our compounds do is they turn it on full blast,” Wong says. “Even in the presence of a small amount of virus, if the pathway is triggered, then the antiviral response is also maximized.”

Fighting infection

The researchers then selected eight of the most promising compounds and screened them for their ability to kill viruses while avoiding harmful effects in human cells. Based on these tests, the researchers chose three top candidates, which they called IBX-200, IBX-202, and IBX-204.

In cells that were infected with either Zika virus, herpes virus, or RSV, treatment with these compounds significantly reduced the amount of virus in the cells. The researchers then tested one of the compounds, IBX-200, in mice infected with herpes virus, and found that it was able to reduce the viral load and improve symptoms.

Experiments showed that these compounds appear to turn on an enzyme that is involved in detecting stress. This activates the stress response pathway and primes the cells to become more responsive to viral infection. When applied to cells that are not already infected, the compounds have no effect.

The researchers now plan to evaluate their lead candidates against a broader range of viruses. They also aim to identify additional compounds that activate the integrated stress response, as well as other cellular stress pathways with the potential to clear viral or bacterial infections.

The research was funded by the Defense Threat Reduction Agency, the National Science Foundation, the U.S. Army Research Office, and Integrated Biosciences.

Texas failed to spend federal aid for disaster protection

ClimateWire News - Mon, 07/14/2025 - 6:14am
States across the country have not used billions of dollars from FEMA intended to reduce damage from flooding and other disasters.

State Department’s gutting of climate staff hamstrings US agenda, former diplomats say

ClimateWire News - Mon, 07/14/2025 - 6:13am
Friday's mass firing included climate and energy staff, potentially thwarting U.S. global engagement as China grabs the reins on clean energy development.

California lost $3B by delaying cap-and-trade overhaul, report says

ClimateWire News - Mon, 07/14/2025 - 6:11am
A delay in strengthening the California program caused the state to take in less money for climate projects, a climate advocacy group says.

Trump megalaw will increase emissions, slow clean energy growth

ClimateWire News - Mon, 07/14/2025 - 6:11am
Household energy expenses will rise too, according to analysis from the Rhodium Group.

Missouri AG investigates shareholder advisory firms over climate

ClimateWire News - Mon, 07/14/2025 - 6:10am
Andrew Bailey says Glass Lewis and Institutional Shareholder Services present themselves as neutral but push "aggressive climate activism policies.”

Von der Leyen vs. Weber: The EU’s climate fight reaches its endgame

ClimateWire News - Mon, 07/14/2025 - 6:08am
The two EU conservative heavyweights’ growing divisions are coming to a head over a crucial 2040 climate target.

Elon Musk faces a new threat in Canada

ClimateWire News - Mon, 07/14/2025 - 6:08am
Prime Minister Mark Carney is under pressure from Washington to make an EV U-turn.

Breaking down the force of water in the Texas floods

ClimateWire News - Mon, 07/14/2025 - 6:07am
A small amount of water — less than many might think — can sweep away people, cars and homes. Six inches is enough to knock people off their feet.

How hot can it get? Scientists struggle to find an answer.

ClimateWire News - Mon, 07/14/2025 - 6:07am
The answer has grave implications for humanity as climate change makes heat more intense and frequent.

Squid Dominated the Oceans in the Late Cretaceous

Schneier on Security - Fri, 07/11/2025 - 5:04pm

New research:

One reason the early years of squids has been such a mystery is because squids’ lack of hard shells made their fossils hard to come by. Undeterred, the team instead focused on finding ancient squid beaks—hard mouthparts with high fossilization potential that could help the team figure out how squids evolved.

With that in mind, the team developed an advanced fossil discovery technique that completely digitized rocks with all their embedded fossils in complete 3D form. Upon using that technique on Late Cretaceous rocks from Japan, the team identified 1,000 fossilized cephalopod beaks hidden inside the rocks, which included 263 squid specimens and 40 previously unknown squid species...

Simulation-based pipeline tailors training data for dexterous robots

MIT Latest News - Fri, 07/11/2025 - 3:20pm

When ChatGPT or Gemini give what seems to be an expert response to your burning questions, you may not realize how much information it relies on to give that reply. Like other popular generative artificial intelligence (AI) models, these chatbots rely on backbone systems called foundation models that train on billions, or even trillions, of data points.

In a similar vein, engineers are hoping to build foundation models that train a range of robots on new skills like picking up, moving, and putting down objects in places like homes and factories. The problem is that it’s difficult to collect and transfer instructional data across robotic systems. You could teach your system by teleoperating the hardware step-by-step using technology like virtual reality (VR), but that can be time-consuming. Training on videos from the internet is less instructive, since the clips don’t provide a step-by-step, specialized task walk-through for particular robots.

A simulation-driven approach called “PhysicsGen” from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Robotics and AI Institute customizes robot training data to help robots find the most efficient movements for a task. The system can multiply a few dozen VR demonstrations into nearly 3,000 simulations per machine. These high-quality instructions are then mapped to the precise configurations of mechanical companions like robotic arms and hands. 

PhysicsGen creates data that generalize to specific robots and condition via a three-step process. First, a VR headset tracks how humans manipulate objects like blocks using their hands. These interactions are mapped in a 3D physics simulator at the same time, visualizing the key points of our hands as small spheres that mirror our gestures. For example, if you flipped a toy over, you’d see 3D shapes representing different parts of your hands rotating a virtual version of that object.

The pipeline then remaps these points to a 3D model of the setup of a specific machine (like a robotic arm), moving them to the precise “joints” where a system twists and turns. Finally, PhysicsGen uses trajectory optimization — essentially simulating the most efficient motions to complete a task — so the robot knows the best ways to do things like repositioning a box.

Each simulation is a detailed training data point that walks a robot through potential ways to handle objects. When implemented into a policy (or the action plan that the robot follows), the machine has a variety of ways to approach a task, and can try out different motions if one doesn’t work.

“We’re creating robot-specific data without needing humans to re-record specialized demonstrations for each machine,” says Lujie Yang, an MIT PhD student in electrical engineering and computer science and CSAIL affiliate who is the lead author of a new paper introducing the project. “We’re scaling up the data in an autonomous and efficient way, making task instructions useful to a wider range of machines.”

Generating so many instructional trajectories for robots could eventually help engineers build a massive dataset to guide machines like robotic arms and dexterous hands. For example, the pipeline might help two robotic arms collaborate on picking up warehouse items and placing them in the right boxes for deliveries. The system may also guide two robots to work together in a household on tasks like putting away cups.

PhysicsGen’s potential also extends to converting data designed for older robots or different environments into useful instructions for new machines. “Despite being collected for a specific type of robot, we can revive these prior datasets to make them more generally useful,” adds Yang.

Addition by multiplication

PhysicsGen turned just 24 human demonstrations into thousands of simulated ones, helping both digital and real-world robots reorient objects.

Yang and her colleagues first tested their pipeline in a virtual experiment where a floating robotic hand needed to rotate a block into a target position. The digital robot executed the task at a rate of 81 percent accuracy by training on PhysicGen’s massive dataset, a 60 percent improvement from a baseline that only learned from human demonstrations.

The researchers also found that PhysicsGen could improve how virtual robotic arms collaborate to manipulate objects. Their system created extra training data that helped two pairs of robots successfully accomplish tasks as much as 30 percent more often than a purely human-taught baseline.

In an experiment with a pair of real-world robotic arms, the researchers observed similar improvements as the machines teamed up to flip a large box into its designated position. When the robots deviated from the intended trajectory or mishandled the object, they were able to recover mid-task by referencing alternative trajectories from their library of instructional data.

Senior author Russ Tedrake, who is the Toyota Professor of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering at MIT, adds that this imitation-guided data generation technique combines the strengths of human demonstration with the power of robot motion planning algorithms.

“Even a single demonstration from a human can make the motion planning problem much easier,” says Tedrake, who is also a senior vice president of large behavior models at the Toyota Research Institute and CSAIL principal investigator. “In the future, perhaps the foundation models will be able to provide this information, and this type of data generation technique will provide a type of post-training recipe for that model.”

The future of PhysicsGen

Soon, PhysicsGen may be extended to a new frontier: diversifying the tasks a machine can execute.

“We’d like to use PhysicsGen to teach a robot to pour water when it’s only been trained to put away dishes, for example,” says Yang. “Our pipeline doesn’t just generate dynamically feasible motions for familiar tasks; it also has the potential of creating a diverse library of physical interactions that we believe can serve as building blocks for accomplishing entirely new tasks a human hasn’t demonstrated.”

Creating lots of widely applicable training data may eventually help build a foundation model for robots, though MIT researchers caution that this is a somewhat distant goal. The CSAIL-led team is investigating how PhysicsGen can harness vast, unstructured resources — like internet videos — as seeds for simulation. The goal: transform everyday visual content into rich, robot-ready data that could teach machines to perform tasks no one explicitly showed them.

Yang and her colleagues also aim to make PhysicsGen even more useful for robots with diverse shapes and configurations in the future. To make that happen, they plan to leverage datasets with demonstrations of real robots, capturing how robotic joints move instead of human ones.

The researchers also plan to incorporate reinforcement learning, where an AI system learns by trial and error, to make PhysicsGen expand its dataset beyond human-provided examples. They may augment their pipeline with advanced perception techniques to help a robot perceive and interpret their environment visually, allowing the machine to analyze and adapt to the complexities of the physical world.

For now, PhysicsGen shows how AI can help us teach different robots to manipulate objects within the same category, particularly rigid ones. The pipeline may soon help robots find the best ways to handle soft items (like fruits) and deformable ones (like clay), but those interactions aren’t easy to simulate yet.

Yang and Tedrake wrote the paper with two CSAIL colleagues: co-lead author and MIT PhD student Hyung Ju “Terry” Suh SM ’22 and MIT PhD student Bernhard Paus Græsdal. Robotics and AI Institute researchers Tong Zhao ’22, MEng ’23, Tarik Kelestemur, Jiuguang Wang, and Tao Pang PhD ’23 are also authors. Their work was supported by the Robotics and AI Institute and Amazon.

The researchers recently presented their work at the Robotics: Science and Systems conference.

New AI system uncovers hidden cell subtypes, boosts precision medicine

MIT Latest News - Fri, 07/11/2025 - 2:40pm

In order to produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors, because those differences impact how tumors respond to treatment.

Part of this work requires a deep understanding of the RNA or protein molecules each cancer cell expresses, where it is located in the tumor, and what it looks like under a microscope.

Traditionally, scientists have looked at one or more of these aspects separately, but now a new deep learning AI tool, CellLENS (Cell Local Environment and Neighborhood Scan), fuses all three domains together, using a combination of convolutional neural networks and graph neural networks to build a comprehensive digital profile for every single cell. This allows the system to group cells with similar biology — effectively separating even those that appear very similar in isolation, but behave differently depending on their surroundings.

The study, published recently in Nature Immunology, details the results of a collaboration between researchers from MIT, Harvard Medical School, Yale University, Stanford University, and University of Pennsylvania — an effort led by Bokai Zhu, an MIT postdoc and member of the Broad Institute of MIT and Harvard and the Ragon Institute of MGH, MIT, and Harvard.

Zhu explains the impact of this new tool: “Initially we would say, oh, I found a cell. This is called a T cell. Using the same dataset, by applying CellLENS, now I can say this is a T cell, and it is currently attacking a specific tumor boundary in a patient.

“I can use existing information to better define what a cell is, what is the subpopulation of that cell, what that cell is doing, and what is the potential functional readout of that cell. This method may be used to identify a new biomarker, which provides specific and detailed information about diseased cells, allowing for more targeted therapy development.”

This is a critical advance because current methodologies often miss critical molecular or contextual information — for example, immunotherapies may target cells that only exist at the boundary of a tumor, limiting efficacy. By using deep learning, the researchers can detect many different layers of information with CellLENS, including morphology and where the cell is spatially in a tissue.

When applied to samples from healthy tissue and several types of cancer, including lymphoma and liver cancer, CellLENS uncovered rare immune cell subtypes and revealed how their activity and location relate to disease processes — such as tumor infiltration or immune suppression.

These discoveries could help scientists better understand how the immune system interacts with tumors and pave the way for more precise cancer diagnostics and immunotherapies.

“I’m extremely excited by the potential of new AI tools, like CellLENS, to help us more holistically understand aberrant cellular behaviors within tissues,” says co-author Alex K. Shalek, the director of the Institute for Medical Engineering and Science (IMES), the J. W. Kieckhefer Professor in IMES and Chemistry, and an extramural member of the Koch Institute for Integrative Cancer Research at MIT, as well as an Institute member of the Broad Institute and a member of the Ragon Institute. “We can now measure a tremendous amount of information about individual cells and their tissue contexts with cutting-edge, multi-omic assays. Effectively leveraging that data to nominate new therapeutic leads is a critical step in developing improved interventions. When coupled with the right input data and careful downsteam validations, such tools promise to accelerate our ability to positively impact human health and wellness.”

Tradecraft in the Information Age

Schneier on Security - Fri, 07/11/2025 - 12:06pm

Long article on the difficulty (impossibility?) of human spying in the age of ubiquitous digital surveillance.

Study shows a link between obesity and what’s on local restaurant menus

MIT Latest News - Fri, 07/11/2025 - 11:35am

For many years, health experts have been concerned about “food deserts,” places where residents lack good nutritional options. Now, an MIT-led study of three major global cities uses a new, granular method to examine the issue, and concludes that having fewer and less nutritional eating options nearby correlates with obesity and other health outcomes.

Rather than just mapping geographic areas, the researchers examined the dietary value of millions of food items on roughly 30,000 restaurant menus and derived a more precise assessment of the connection between neighborhoods and nutrition.

“We show that what is sold in a restaurant has a direct correlation to people’s health,” says MIT researcher Fabio Duarte, co-author of a newly published paper outlining the study’s results. “The food landscape matters.”

The open-access paper, “Data-driven nutritional assessment of urban food landscapes: insights from Boston, London, Dubai,” was published this week in Nature: Scientific Reports.

The co-authors are Michael Tufano, a PhD student at Wageningen University, in the Netherlands; Duarte, associate director of MIT’s Senseable City Lab, which uses data to study cities as dynamic systems; Martina Mazzarello, a postdoc at the Senseable City Lab; Javad Eshtiyagh, a research fellow at the Senseable City Lab; Carlo Ratti, professor of the practice and director of the Senseable City Lab; and Guido Camps, a senior researcher at Wageningen University.

Scanning the menu

To conduct the study, the researchers examined menus from Boston, Dubai, and London, in the summer of 2023, compiling a database of millions of items available through popular food-delivery platforms. The team then evaluated the food items as rated by the USDA’s FoodData Central database, an information bank with 375,000 kinds of food products listed. The study deployed two main metrics, the Meal Balance Index, and the Nutrient-Rich Foods Index.

The researchers examined about 222,000 menu items from over 2,000 restaurants in Boston, about 1.6 million menu items from roughly 9,000 restaurants in Dubai, and about 3.1 million menu items from about 18,000 restaurants in London. In Boston, about 71 percent of the items were in the USDA database; in Dubai and London, that figure was 42 percent and 56 percent, respectively.

The team then rated the nutritional value of the items appearing on menus, and correlated the food data with health-outcome data from Boston and London. In London, they found a clear correlation between neighborhood menu offerings and obesity, or the lack thereof; with a slightly less firm correlation in Boston. Areas with food options that include a lot of dietary fibers, sometimes along with fruits and vegetables, tend to have better health data.

In Dubai, the researchers did not have the same types of health data available but did observe a strong correlation between rental prices and the nutritional value of neighborhood-level food, suggesting that wealthier residents have better nourishment options.

“At the item level, when we have less nutritional food, we see more cases of obsesity,” Tufano says. “It’s true that not only do we have more fast food in poor neighborhoods, but the nutritional value is not the same.”

Re-mapping the food landscape

By conducting the study in this fashion, the scholars added a layer of analysis to past studies of food deserts. While past work has broken ground by identifying neighborhoods and areas lacking good food access, this research makes a more comprehensive assessment of what people consume. The research moves toward evaluating the complex mix of food available in any given area, which can be true even of areas with more limited options.

“We were not satisfied with this idea that if you only have fast food, it’s a food desert, but if you have a Whole Foods, it’s not,” Duarte says. “It’s not necessarily like that.”

For the Senseable City Lab researchers, the study is a new technique further enabling them to understand city dynamics and the effects of the urban environment on health. Past lab studies have often focused on issues such as urban mobility, while extending to matters such as mobility and air pollution, among other topics.

Being able to study food and health at the neighborhood level, though, is still another example of the ways that data-rich spheres of life can be studied in close detail.

“When we started working on cities and data, the data resolution was so low,” Ratti says. “Today the amount of data is so immense we see this great opportunity to look at cities and see the influence of the urban environment as a big determinant of health. We see this as one of the new frontiers of our lab. It’s amazing how we can now look at this very precisely in cities.”

Pages