Feed aggregator
Largest DDoS Attack to Date
It was a recently unimaginable 7.3 Tbps:
The vast majority of the attack was delivered in the form of User Datagram Protocol packets. Legitimate UDP-based transmissions are used in especially time-sensitive communications, such as those for video playback, gaming applications, and DNS lookups. It speeds up communications by not formally establishing a connection before data is transferred. Unlike the more common Transmission Control Protocol, UDP doesn’t wait for a connection between two computers to be established through a handshake and doesn’t check whether data is properly received by the other party. Instead, it immediately sends data from one machine to another...
Cities lose hope for restarting disaster projects killed by Trump
EPA leaves social cost of carbon on the cutting-room floor
AI could cut more emissions than it creates
US hybrid car sales accelerate while EVs sputter
Clean energy project cancellations surged to $1.4B in May
Michigan urges federal court to dump Trump climate lawsuit
Study finds offsetting fossil fuels with trees is nearly impossible
Study: Early humans survived in extreme environments
Calif. to examine its oil ties following Indigenous leaders’ pleas
LLMs factor in unrelated information when recommending medical treatments
A large language model (LLM) deployed to make treatment recommendations can be tripped up by nonclinical information in patient messages, like typos, extra white space, missing gender markers, or the use of uncertain, dramatic, and informal language, according to a study by MIT researchers.
They found that making stylistic or grammatical changes to messages increases the likelihood an LLM will recommend that a patient self-manage their reported health condition rather than come in for an appointment, even when that patient should seek medical care.
Their analysis also revealed that these nonclinical variations in text, which mimic how people really communicate, are more likely to change a model’s treatment recommendations for female patients, resulting in a higher percentage of women who were erroneously advised not to seek medical care, according to human doctors.
This work “is strong evidence that models must be audited before use in health care — which is a setting where they are already in use,” says Marzyeh Ghassemi, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS), a member of the Institute of Medical Engineering Sciences and the Laboratory for Information and Decision Systems, and senior author of the study.
These findings indicate that LLMs take nonclinical information into account for clinical decision-making in previously unknown ways. It brings to light the need for more rigorous studies of LLMs before they are deployed for high-stakes applications like making treatment recommendations, the researchers say.
“These models are often trained and tested on medical exam questions but then used in tasks that are pretty far from that, like evaluating the severity of a clinical case. There is still so much about LLMs that we don’t know,” adds Abinitha Gourabathina, an EECS graduate student and lead author of the study.
They are joined on the paper, which will be presented at the ACM Conference on Fairness, Accountability, and Transparency, by graduate student Eileen Pan and postdoc Walter Gerych.
Mixed messages
Large language models like OpenAI’s GPT-4 are being used to draft clinical notes and triage patient messages in health care facilities around the globe, in an effort to streamline some tasks to help overburdened clinicians.
A growing body of work has explored the clinical reasoning capabilities of LLMs, especially from a fairness point of view, but few studies have evaluated how nonclinical information affects a model’s judgment.
Interested in how gender impacts LLM reasoning, Gourabathina ran experiments where she swapped the gender cues in patient notes. She was surprised that formatting errors in the prompts, like extra white space, caused meaningful changes in the LLM responses.
To explore this problem, the researchers designed a study in which they altered the model’s input data by swapping or removing gender markers, adding colorful or uncertain language, or inserting extra space and typos into patient messages.
Each perturbation was designed to mimic text that might be written by someone in a vulnerable patient population, based on psychosocial research into how people communicate with clinicians.
For instance, extra spaces and typos simulate the writing of patients with limited English proficiency or those with less technological aptitude, and the addition of uncertain language represents patients with health anxiety.
“The medical datasets these models are trained on are usually cleaned and structured, and not a very realistic reflection of the patient population. We wanted to see how these very realistic changes in text could impact downstream use cases,” Gourabathina says.
They used an LLM to create perturbed copies of thousands of patient notes while ensuring the text changes were minimal and preserved all clinical data, such as medication and previous diagnosis. Then they evaluated four LLMs, including the large, commercial model GPT-4 and a smaller LLM built specifically for medical settings.
They prompted each LLM with three questions based on the patient note: Should the patient manage at home, should the patient come in for a clinic visit, and should a medical resource be allocated to the patient, like a lab test.
The researchers compared the LLM recommendations to real clinical responses.
Inconsistent recommendations
They saw inconsistencies in treatment recommendations and significant disagreement among the LLMs when they were fed perturbed data. Across the board, the LLMs exhibited a 7 to 9 percent increase in self-management suggestions for all nine types of altered patient messages.
This means LLMs were more likely to recommend that patients not seek medical care when messages contained typos or gender-neutral pronouns, for instance. The use of colorful language, like slang or dramatic expressions, had the biggest impact.
They also found that models made about 7 percent more errors for female patients and were more likely to recommend that female patients self-manage at home, even when the researchers removed all gender cues from the clinical context.
Many of the worst results, like patients told to self-manage when they have a serious medical condition, likely wouldn’t be captured by tests that focus on the models’ overall clinical accuracy.
“In research, we tend to look at aggregated statistics, but there are a lot of things that are lost in translation. We need to look at the direction in which these errors are occurring — not recommending visitation when you should is much more harmful than doing the opposite,” Gourabathina says.
The inconsistencies caused by nonclinical language become even more pronounced in conversational settings where an LLM interacts with a patient, which is a common use case for patient-facing chatbots.
But in follow-up work, the researchers found that these same changes in patient messages don’t affect the accuracy of human clinicians.
“In our follow up work under review, we further find that large language models are fragile to changes that human clinicians are not,” Ghassemi says. “This is perhaps unsurprising — LLMs were not designed to prioritize patient medical care. LLMs are flexible and performant enough on average that we might think this is a good use case. But we don’t want to optimize a health care system that only works well for patients in specific groups.”
The researchers want to expand on this work by designing natural language perturbations that capture other vulnerable populations and better mimic real messages. They also want to explore how LLMs infer gender from clinical text.
Author Correction: Recommendations for producing knowledge syntheses to inform climate change assessments
Nature Climate Change, Published online: 23 June 2025; doi:10.1038/s41558-025-02378-y
Author Correction: Recommendations for producing knowledge syntheses to inform climate change assessmentsFriday Squid Blogging: Gonate Squid Video
This is the first ever video of the Antarctic Gonate Squid.
As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.
Researchers present bold ideas for AI at MIT Generative AI Impact Consortium kickoff event
Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.
The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.
Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13. Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the consortium, welcomed the attendees and thanked the consortium’s founding industry members.
“The amazing response to our call for proposals is an incredible testament to the energy and creativity that MGAIC has sparked at MIT. We are especially grateful to our founding members, whose support and vision helped bring this endeavor to life,” adds Chandrakasan. “One of the things that has been most remarkable about MGAIC is that this is a truly cross-Institute initiative. Deans from all five schools and the college collaborated in shaping and implementing it.”
Vivek F. Farias, the Patrick J. McGovern (1959) Professor at the MIT Sloan School of Management and co-faculty director of the consortium with Tim Kraska, associate professor of electrical engineering and computer science in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), emceed the afternoon of five-minute lightning presentations.
Presentation highlights include:
“AI-Driven Tutors and Open Datasets for Early Literacy Education,” presented by Ola Ozernov-Palchik, a research scientist at the McGovern Institute for Brain Research, proposed a refinement for AI-tutors for pK-7 students to potentially decrease literacy disparities.
“Developing jam_bots: Real-Time Collaborative Agents for Live Human-AI Musical Improvisation,” presented by Anna Huang, assistant professor of music and assistant professor of electrical engineering and computer science, and Joe Paradiso, the Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences at the MIT Media Lab, aims to enhance human-AI musical collaboration in real-time for live concert improvisation.
“GENIUS: GENerative Intelligence for Urban Sustainability,” presented by Norhan Bayomi, a postdoc at the MIT Environmental Solutions Initiative and a research assistant in the Urban Metabolism Group, which aims to address the critical gap of a standardized approach in evaluating and benchmarking cities’ climate policies.
Georgia Perakis, the John C Head III Dean (Interim) of the MIT Sloan School of Management and professor of operations management, operations research, and statistics, who serves as co-chair of the GenAI Dean’s oversight group with Dan Huttenlocher, dean of the MIT Schwarzman College of Computing, ended the event with closing remarks that emphasized “the readiness and eagerness of our community to lead in this space.”
“This is only the beginning,” he continued. “We are at the front edge of a historic moment — one where MIT has the opportunity, and the responsibility, to shape the future of generative AI with purpose, with excellence, and with care.”
Introducing the L. Rafael Reif Innovation Corridor
The open space connecting Hockfield Court with Massachusetts Avenue, in the heart of MIT’s campus, is now the L. Rafael Reif Innovation Corridor, in honor of the Institute’s 17th president. At a dedication ceremony Monday, Reif’s colleagues, friends, and family gathered to honor his legacy and unveil a marker for the walkway that was previously known as North Corridor or “the Outfinite.”
“It’s no accident that the space we dedicate today is not a courtyard, but a corridor — a channel for people and ideas to flow freely through the heart of MIT, and to carry us outward, to limits of our aspirations,” said Sally Kornbluth, who succeeded Reif as MIT president in 2023.
“With his signature combination of new-world thinking and old-world charm, and as a grand thinker and doer, Rafael left an indelible mark on MIT,” Kornbluth said. “As a permanent testament to his service and his achievements in service to MIT, the nation, and the world, we now dedicate this space as the L. Rafael Reif Innovation Corridor.”
Reif served as president for more than 10 years, following seven years as provost. He has been at MIT since 1980, when he joined the faculty as an assistant professor of electrical engineering.
“Through all those roles, what stood out most was his humility, his curiosity, and his remarkable ability to speak with clarity and conviction,” said Corporation Chair Mark Gorenberg, who opened the ceremony. “Under his leadership, MIT not only stayed true to its mission, it thrived, expanding its impact and strengthening its global voice.”
Gorenberg introduced Abraham J. Siegel Professor of Management and professor of operations research Cindy Barnhart, who served as chancellor, then provost, during Reif’s term as president. Barnhart, who will be stepping down as provost on July 1, summarized the many highlights from Reif’s presidency, such as the establishment of MIT Schwarzman College of Computing, the revitalization of Kendall Square, and the launch of The Engine, as well as the construction or modernization of many buildings, from the Wright Brothers Wind Tunnel to the new Edward and Joyce Linde Music Building, among other accomplishments.
“Beyond space, Rafael’s bold thinking and passion extends to MIT’s approach to education,” Barnhart continued, describing how Reif championed the building of OpenCourseWare, MITx, and edX. She also noted his support for the health and well-being of the MIT community, through efforts such as addressing student sexual misconduct and forming the MindHandHeart initiative. He also hosted dance parties and socials, joined students in the dining halls for dinner, chatted with faculty and staff over breakfasts and at forums, and more.
“At gatherings over the years, Rafael’s wife, Chris, was there by his side,” Barnhart noted, adding, “I’d like to take this opportunity to acknowledge her and thank her for her welcoming and gracious spirit.”
In summary, “I am grateful to Rafael for his visionary leadership and for his love of MIT and its people,” Barnhart said as she presented Reif with a 3D-printed replica of the Maclaurin buildings (MIT Buildings 3, 4, and 10), which was created through a collaboration between the Glass Lab, Edgerton Center, and Project Manus.
Next, Institute Professor Emeritus John Harbison played an interlude on the piano, and a musical ensemble reprised the “Rhumba for Rafael,” which Harbison composed for Reif’s inauguration in 2012.
When Reif took the podium, he reflected on the location of the corridor and its significance to early chapters in his own career; his first office and lab were in Building 13, overlooking what is now the eponymous walkway.
He also considered the years ahead: “The people who pass through this corridor in the future will surely experience the unparalleled excitement of being young at MIT, with the full expectation of upending the world to improve it,” he said.
Faculty and staff walking through the corridor may experience the “undimmed excitement” of working and studying alongside extraordinary students and colleagues, and feeling the “deep satisfaction of having created infinite memories here throughout a long career.”
“Even if none of them gives me a thought,” Reif continued, “I would like to believe that my spirit will be here, watching them with pride as they continue the never-ending mission of creating a better world.”
Protect Yourself From Meta’s Latest Attack on Privacy
Researchers recently caught Meta using an egregious new tracking technique to spy on you. Exploiting a technical loophole, the company was able to have their apps snoop on users’ web browsing. This tracking technique stands out for its flagrant disregard of core security protections built into phones and browsers. The episode is yet another reason to distrust Meta, block web tracking, and end surveillance advertising.
Fortunately, there are steps that you, your browser, and your government can take to fight online tracking.
What Makes Meta’s New Tracking Technique So Problematic?More than 10 years ago, Meta introduced a snippet of code called the “Meta pixel,” which has since been embedded on about 20% of the most trafficked websites. This pixel exists to spy on you, recording how visitors use a website and respond to ads, and siphoning potentially sensitive info like financial information from tax filing websites and medical information from hospital websites, all in service of the company’s creepy system of surveillance-based advertising.
While these pixels are well-known, and can be blocked by tools like EFF’s Privacy Badger, researchers discovered another way these pixels were being used to track you.
Even users who blocked or cleared cookies, hid their IP address with a VPN, or browsed in incognito mode could be identified
Meta’s tracking pixel was secretly communicating with Meta’s apps on Android devices. This violates a fundamental security feature (“sandboxing”) of mobile operating systems that prevents apps from communicating with each other. Meta got around this restriction by exploiting localhost, a feature meant for developer testing. This allowed Meta to create a hidden channel between mobile browser apps and its own apps. You can read more about the technical details here.
This workaround helped Meta bypass user privacy protections and attempts at anonymity. Typically, Meta tries to link data from “anonymous” website visitors to individual Meta accounts using signals like IP addresses and cookies. But Meta made re-identification trivial with this new tracking technique by sending information directly from its pixel to Meta's apps, where users are already logged in. Even users who blocked or cleared cookies, hid their IP address with a VPN, or browsed in incognito mode could be identified with this tracking technique.
Meta didn’t just hide this tracking technique from users. Developers who embedded Meta’s tracking pixels on their websites were also kept in the dark. Some developers noticed the pixel contacting localhost from their websites, but got no explanation when they raised concerns to Meta. Once publicly exposed, Meta immediately paused this tracking technique. They claimed they were in discussions with Google about “a potential miscommunication regarding the application of their policies.”
While the researchers only observed the practice on Android devices, similar exploits may be possible on iPhones as well.
This exploit underscores the unique privacy risks we face when Big Tech can leverage out of control online tracking to profit from our personal data.
How Can You Protect Yourself?Meta seems to have stopped using this technique for now, but that doesn’t mean they’re done inventing new ways to track you. Here are a few steps you can take to protect yourself:
Use a Privacy-Focused Browser
Choose a browser with better default privacy protections than Chrome. For example, Brave and DuckDuckGo protected users from this tracking technique because they block Meta’s tracking pixel by default. Firefox only partially blocked the new tracking technique with its default settings, but fully blocked it for users with “Enhanced Tracking Protection” set to “Strict.”
It’s also a good idea to avoid using in-app browsers. When you open links inside the Facebook or Instagram apps, Meta can track you more easily than if you opened the same links in an external browser.
Delete Unnecessary Apps
Reduce the number of ways your information can leak by deleting apps you don’t trust or don’t regularly use. Try opting for websites over apps when possible. In this case, and many similar cases, using the Facebook and Instagram website instead of the apps would have limited data collection. Even though both can contain tracking code, apps can access information that websites generally can’t, like a persistent “advertising ID” that companies use to track you (follow EFF’s instructions to turn it off if you haven’t already).
Install Privacy Badger
EFF’s free browser extension blocks trackers to stop companies from spying on you online. Although Privacy Badger would’ve stopped Meta’s latest tracking technique by blocking their pixel, Firefox for Android is the only mobile browser it currently supports. You can install Privacy Badger on Chrome, Firefox, and Edge on your desktop computer.
Limit Meta’s Use of Your Data
Meta’s business model creates an incentive to collect as much information as possible about people to sell targeted ads. Short of deleting your accounts, you have a number of options to limit tracking and how the company uses your data.
How Should Google Chrome Respond?After learning about Meta’s latest tracking technique, Chrome and Firefox released fixes for the technical loopholes that Meta exploited. That’s an important step, but Meta’s deliberate attempt to bypass browsers’ privacy protections shows why browsers should do more to protect users from online trackers.
Unfortunately, the most popular browser, Google Chrome, is also the worst for your privacy. Privacy Badger can help by blocking trackers on desktop Chrome, but Chrome for Android doesn’t support browser extensions. That seems to be Google’s choice, rather than a technical limitation. Given the lack of privacy protections they offer, Chrome should support extensions on Android to let users protect themselves.
Although Chrome addressed the latest Meta exploit after it was exposed, their refusal to block third-party cookies or known trackers leaves the door wide open for Meta’s other creepy tracking techniques. Even when browsers block third-party cookies, allowing trackers to load at all gives them other ways to harvest and de-anonymize users’ data. Chrome should protect its users by blocking known trackers (including Google’s). Tracker-blocking features in Safari and Firefox show that similar protections are possible and long overdue in Chrome. It has yet to be approved to ship in Chrome, but a Google proposal to block fingerprinting scripts in Incognito Mode is a promising start.
Yet Another Reason to Ban Online Behavioral AdvertisingMeta’s business model relies on collecting as much information as possible about people in order to sell highly-targeted ads. Even if this method has been paused, as long as they have the incentive to do so Meta will keep finding ways to bypass your privacy protections.
The best way to stop this cycle of invasive tracking techniques and patchwork fixes is to ban online behavioral advertising. This would end the practice of targeting ads based on your online activity, removing the primary incentive for companies to track and share your personal data. We need strong federal privacy laws to ensure that you, not Meta, control what information you share online.
Island rivers carve passageways through coral reefs
Volcanic islands, such as the islands of Hawaii and the Caribbean, are surrounded by coral reefs that encircle an island in a labyrinthine, living ring. A coral reef is punctured at points by reef passes — wide channels that cut through the coral and serve as conduits for ocean water and nutrients to filter in and out. These watery passageways provide circulation throughout a reef, helping to maintain the health of corals by flushing out freshwater and transporting key nutrients.
Now, MIT scientists have found that reef passes are shaped by island rivers. In a study appearing today in the journal Geophysical Research Letters, the team shows that the locations of reef passes along coral reefs line up with where rivers funnel out from an island’s coast.
Their findings provide the first quantitative evidence of rivers forming reef passes. Scientists and explorers had speculated that this may be the case: Where a river on a volcanic island meets the coast, the freshwater and sediment it carries flows toward the reef, where a strong enough flow can tunnel into the surrounding coral. This idea has been proposed from time to time but never quantitatively tested, until now.
“The results of this study help us to understand how the health of coral reefs depends on the islands they surround,” says study author Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences at MIT.
“A lot of discussion around rivers and their impact on reefs today has been negative because of human impact and the effects of agricultural practices,” adds lead author Megan Gillen, a graduate student in the MIT-WHOI Joint Program in Oceanography. “This study shows the potential long-term benefits rivers can have on reefs, which I hope reshapes the paradigm and highlights the natural state of rivers interacting with reefs.”
The study’s other co-author is Andrew Ashton of the Woods Hole Oceanographic Institution.
Drawing the lines
The new study is based on the team’s analysis of the Society Islands, a chain of islands in the South Pacific Ocean that includes Tahiti and Bora Bora. Gillen, who joined the MIT-WHOI program in 2020, was interested in exploring connections between coral reefs and the islands they surround. With limited options for on-site work during the Covid-19 pandemic, she and Perron looked to see what they could learn through satellite images and maps of island topography. They did a quick search using Google Earth and zeroed in on the Society Islands for their uniquely visible reef and island features.
“The islands in this chain have these iconic, beautiful reefs, and we kept noticing these reef passes that seemed to align with deeply embayed portions of the coastline,” Gillen says. “We started asking ourselves, is there a correlation here?”
Viewed from above, the coral reefs that circle some islands bear what look to be notches, like cracks that run straight through a ring. These breaks in the coral are reef passes — large channels that run tens of meters deep and can be wide enough for some boats to pass through. On first look, Gillen noticed that the most obvious reef passes seemed to line up with flooded river valleys — depressions in the coastline that have been eroded over time by island rivers that flow toward the ocean. She wondered whether and to what extent island rivers might shape reef passes.
“People have examined the flow through reef passes to understand how ocean waves and seawater circulate in and out of lagoons, but there have been no claims of how these passes are formed,” Gillen says. “Reef pass formation has been mentioned infrequently in the literature, and people haven’t explored it in depth.”
Reefs unraveled
To get a detailed view of the topography in and around the Society Islands, the team used data from the NASA Shuttle Radar Topography Mission — two radar antennae that flew aboard the space shuttle in 1999 and measured the topography across 80 percent of the Earth’s surface.
The researchers used the mission’s topographic data in the Society Islands to create a map of every drainage basin along the coast of each island, to get an idea of where major rivers flow or once flowed. They also marked the locations of every reef pass in the surrounding coral reefs. They then essentially “unraveled” each island’s coastline and reef into a straight line, and compared the locations of basins versus reef passes.
“Looking at the unwrapped shorelines, we find a significant correlation in the spatial relationship between these big river basins and where the passes line up,” Gillen says. “So we can say that statistically, the alignment of reef passes and large rivers does not seem random. The big rivers have a role in forming passes.”
As for how rivers shape the coral conduits, the team has two ideas, which they call, respectively, reef incision and reef encroachment. In reef incision, they propose that reef passes can form in times when the sea level is relatively low, such that the reef is exposed above the sea surface and a river can flow directly over the reef. The water and sediment carried by the river can then erode the coral, progressively carving a path through the reef.
When sea level is relatively higher, the team suspects a reef pass can still form, through reef encroachment. Coral reefs naturally live close to the water surface, where there is light and opportunity for photosynthesis. When sea levels rise, corals naturally grow upward and inward toward an island, to try to “catch up” to the water line.
“Reefs migrate toward the islands as sea levels rise, trying to keep pace with changing average sea level,” Gillen says.
However, part of the encroaching reef can end up in old river channels that were previously carved out by large rivers and that are lower than the rest of the island coastline. The corals in these river beds end up deeper than light can extend into the water column, and inevitably drown, leaving a gap in the form of a reef pass.
“We don’t think it’s an either/or situation,” Gillen says. “Reef incision occurs when sea levels fall, and reef encroachment happens when sea levels rise. Both mechanisms, occurring over dozens of cycles of sea-level rise and island evolution, are likely responsible for the formation and maintenance of reef passes over time.”
The team also looked to see whether there were differences in reef passes in older versus younger islands. They observed that younger islands were surrounded by more reef passes that were spaced closer together, versus older islands that had fewer reef passes that were farther apart.
As islands age, they subside, or sink, into the ocean, which reduces the amount of land that funnels rainwater into rivers. Eventually, rivers are too weak to keep the reef passes open, at which point, the ocean likely takes over, and incoming waves could act to close up some passes.
Gillen is exploring ideas for how rivers, or river-like flow, can be engineered to create paths through coral reefs in ways that would promote circulation and benefit reef health.
“Part of me wonders: If you had a more persistent flow, in places where you don’t naturally have rivers interacting with the reef, could that potentially be a way to increase health, by incorporating that river component back into the reef system?” Gillen says. “That’s something we’re thinking about.”
This research was supported, in part, by the WHOI Watson and Von Damm fellowships.
Surveillance in the US
Good article from 404 Media on the cozy surveillance relationship between local Oregon police and ICE:
In the email thread, crime analysts from several local police departments and the FBI introduced themselves to each other and made lists of surveillance tools and tactics they have access to and felt comfortable using, and in some cases offered to perform surveillance for their colleagues in other departments. The thread also includes a member of ICE’s Homeland Security Investigations (HSI) and members of Oregon’s State Police. In the thread, called the “Southern Oregon Analyst Group,” some members talked about making fake social media profiles to surveil people, and others discussed being excited to learn and try new surveillance techniques. The emails show both the wide array of surveillance tools that are available to even small police departments in the United States and also shows informal collaboration between local police departments and federal agencies, when ordinarily agencies like ICE are expected to follow their own legal processes for carrying out the surveillance...