MIT Latest News

Building trust in science through conversation and empathy
How do we foster trust in science in an increasingly polarized world? A group including scientists, journalists, policymakers and more gathered at MIT on March 10 to discuss how to bridge the gap between scientific expertise and understanding.
The conference, titled “Building Trust in Science for a More Informed Future,” was organized by the MIT Press and the nonprofit Aspen Institute’s Science and Society Program. It featured talks about the power of storytelling, the role of social media and generative artificial intelligence in our information landscape, and why discussions about certain science topics can become so emotionally heated.
A common theme was the importance of empathy between science communicators and the public.
“The idea that disagreement is often seen as disrespect is insightful,” said MIT’s Ford Professor of Political Science Lily Tsai. “One way to communicate respect is genuine curiosity along with the willingness to change one’s mind. We’re often focused on the facts and evidence and saying, ‘Don’t you understand the facts?’ But the ideal conversation is more like, ‘You value ‘x.’ Tell me why you value ‘x’ and let’s see if we can connect on how the science and research helps you to fulfill those values, even if I don’t agree with them.’”
Many participants discussed the threat of misinformation, a problem exacerbated by the emergence of social media and generative AI. But it’s not all bad news for the scientific community. MIT Provost Cindy Barnhart opened the event by citing surveys showing a high level of trust broadly in scientists across the globe. Still, she also pointed to a U.S. survey showing communication was seen as an area of relative weakness for scientists.
Barnhart noted MIT’s long commitment to science communication and commended communication efforts affiliated with MIT including MIT Press, MIT Technology Review, and MIT News.
“We’re working hard to communicate the value of science to society as we fight to build public support for the scientific research, discovery, and evidence that is needed in our society,” Barnhart said. “At MIT, an essential way we do that is by shining a bright light on the groundbreaking work of our faculty, research, scientists, staff, postdocs, and students.”
Another theme was the importance of storytelling in science communication, and participants including the two keynote speakers offered plenty of their own stories. Francis Collins, who directed the National Institutes of Health between 2009 and 2021, and Sudanese climate journalist Lina Yassin delivered a joint keynote address moderated by MIT Vice President for Communications Alfred Ironside.
Recalling his time leading the NIH through the Covid-19 pandemic, Collins said the Covid-19 vaccine development was a major success, but the scientific community failed to explain to the public the way science evolves based on new evidence.
“We missed a chance to use the pandemic as a teachable moment,” Collins said. “In March of 2020, we were just starting to learn about the virus and how it spread, but we had to make recommendations to the public, which would often change a month or two later. So people began to doubt the information they were getting was reliable because it kept changing. If you’re in a circumstance where you’re communicating scientific evidence, start by saying, ‘This is a work in progress.’”
Collins said the government should have had a better plan for communicating information to the public when the pandemic started.
“Our health system was badly broken at the time because it had been underinvested in for far too long, so community-based education wasn’t really possible,” Collins said, noting his agency should have done more to empower physicians who were trusted voices in rural communities. “Far too much of our communication was top down.”
In her keynote address, Yassin shared her experience trying to get people in her home country to evacuate ahead of natural disasters. She said many people initially ignored her advice, citing their faith in God’s plan for them. But when she reframed her messaging to incorporate the teachings of Islam, a religion most of the country practices, she said people were much more receptive.
That was another recurring lesson participants shared: Science discussions don’t occur in a vacuum. Any conversation that ignores a person’s existing values and experiences will be less effective.
“Personal experience, as well as personal faith and belief, are critically important filters that we encounter every time we talk to people about science,” Ironside said.
Making solar projects cheaper and faster with portable factories
As the price of solar panels has plummeted in recent decades, installation costs have taken up a greater share of the technology’s overall price tag. The long installation process for solar farms is also emerging as a key bottleneck in the deployment of solar energy.
Now the startup Charge Robotics is developing solar installation factories to speed up the process of building large-scale solar farms. The company’s factories are shipped to the site of utility solar projects, where equipment including tracks, mounting brackets, and panels are fed into the system and automatically assembled. A robotic vehicle autonomously puts the finished product — which amounts to a completed section of solar farm — in its final place.
“We think of this as the Henry Ford moment for solar,” says CEO Banks Hunter ’15, who founded Charge Robotics with fellow MIT alumnus Max Justicz ’17. “We’re going from a very bespoke, hands on, manual installation process to something much more streamlined and set up for mass manufacturing. There are all kinds of benefits that come along with that, including consistency, quality, speed, cost, and safety.”
Last year, solar energy accounted for 81 percent of new electric capacity in the U.S., and Hunter and Justicz see their factories as necessary for continued acceleration in the industry.
The founders say they were met with skepticism when they first unveiled their plans. But in the beginning of last year, they deployed a prototype system that successfully built a solar farm with SOLV Energy, one of the largest solar installers in the U.S. Now, Charge has raised $22 million for its first commercial deployments later this year.
From surgical robots to solar robots
While majoring in mechanical engineering at MIT, Hunter found plenty of excuses to build things. One such excuse was Course 2.009 (Produce Engineering Processes), where he and his classmates built a smart watch for communication in remote areas.
After graduation, Hunter worked for the MIT alumni-founded startups Shaper Tools and Vicarious Surgical. Vicarious Surgical is a medical robotics company that has raised more than $450 million to date. Banks was the second employee and worked there for five years.
“A lot of really hands on, project-based classes at MIT translated directly into my first roles coming out of school and set me up to be very independent and run large engineering projects,” Banks says, “Course 2.009, in particular, was a big launch point for me. The founders of Vicarious Surgical got in touch with me through the 2.009 network.”
As early as 2017, Hunter and Justicz, who majored in mechanical engineering and computer science, had discussed starting a company together. But they had to decide where to apply their broad engineering and product skillsets.
“Both of us care a lot about climate change. We see climate change as the biggest problem impacting the greatest number of people on the planet,” Hunter says. “Our mentality was if we can build anything, we might as well build something that really matters.”
In the process of cold calling hundreds of people in the energy industry, the founders decided solar was the future of energy production because its price was decreasing so quickly.
“It’s becoming cheaper faster than any other form of energy production in human history,” Hunter says.
When the founders began visiting construction sites for the large, utility-scale solar farms that make up the bulk of energy generation, it wasn’t hard to find the bottlenecks. The first site they traveled to was in the Mojave Desert in California. Hunter describes it as a massive dust bowl where thousands of workers spent months repeating tasks like moving material and assembling the same parts, over and over again.
“The site had something like 2 million panels on it, and every single one was assembled and fastened the same way by hand,” Hunter says. “Max and I thought it was insane. There’s no way that can scale to transform the energy grid in a short window of time.”
Hunter says he heard from each of the largest solar companies in the U.S. that their biggest limitation for scaling was labor shortages. The problem was slowing growth and killing projects.
Hunter and Justicz founded Charge Robotics in 2021 to break through that bottleneck. Their first step was to order utility solar parts and assemble them by hand in their backyards.
“From there, we came up with this portable assembly line that we could ship out to construction sites and then feed in the entire solar system, including the steel tracks, mounting brackets, fasteners, and the solar panels,” Hunter explains. “The assembly line robotically assembles all those pieces to produce completed solar bays, which are chunks of a solar farm.”
Each bay represents a 40-foot piece of the solar farm and weighs about 800 pounds. A robotic vehicle brings it to its final location in the field. Banks says Charge’s system automates all mechanical installation except for the process of pile driving the first metal stakes into the ground.
Charge’s assembly lines also have machine-vision systems that scan each part to ensure quality, and the systems work with the most common solar parts and panel sizes.
From pilot to product
When the founders started pitching their plans to investors and construction companies, people didn’t believe it was possible.
“The initial feedback was basically, ‘This will never work,’” Hunter says. “But as soon as we took our first system out into the field and people saw it operating, they got much more excited and started believing it was real.”
Since that first deployment, Charge’s team has been making its system faster and easier to operate. The company plans to set up its factories at project sites and run them in partnership with solar construction companies. The factories could even run alongside human workers.
“With our system, people are operating robotic equipment remotely rather than putting in the screws themselves,” Hunter explains. “We can essentially deliver the assembled solar to customers. Their only responsibility is to deliver the materials and parts on big pallets that we feed into our system.”
Hunter says multiple factories could be deployed at the same site and could also operate 24/7 to dramatically speed up projects.
“We are hitting the limits of solar growth because these companies don’t have enough people,” Hunter says. “We can build much bigger sites much faster with the same number of people by just shipping out more of our factories. It’s a fundamentally new way of scaling solar energy.”
Compassionate leadership
Professors Emery Brown and Hamsa Balakrishnan work in vastly different fields, but are united by their deep commitment to mentoring students. While each has contributed to major advancements in their respective areas — statistical neuroscience for Brown, and large-scale transportation systems for Balakrishnan — their students might argue that their greatest impact comes from the guidance, empathy, and personal support they provide.
Emery Brown: Holistic mentorship
Brown is the Edward Hood Professor of Medical Engineering and Computational Neuroscience at MIT and a practicing anesthesiologist at Massachusetts General Hospital. Brown’s experimental research has made important contributions toward understanding the neuroscience of how anesthetics act in the brain to create the states of general anesthesia.
One of the biggest challenges in academic environments is knowing how to chart a course. Brown takes the time to connect with students individually, helping them identify meaningful pathways that they may not have considered for themselves. In addition to mentoring his graduate students and postdocs, Brown also hosts clinicians and faculty from around the world. Their presence in the lab exposes students to a number of career opportunities and connections outside of MIT’s academic environment.
Brown also continues to support former students beyond their time in his lab, offering guidance on personal and professional development even after they have moved on to other roles. “Knowing that I have Emery at my back as someone I can always turn to … is such a source of confidence and strength as I go forward into my own career,” one nominator wrote.
When Brown faced a major career decision recently, he turned to his students to ask how his choice might affect them. He met with students individually to understand the personal impact that each might experience. Brown was adamant in ensuring that his professional advancement would not jeopardize his students, and invested a great deal of thought and effort in ensuring a positive outcome for them.
Brown is deeply committed to the health and well-being of his students, with many nominators sharing examples of his constant support through challenging personal circumstances. When one student reached out to Brown, overwhelmed by research, recent personal loss, and career uncertainty, Brown created a safe space for vulnerable conversations.
“He listened, supported me, and encouraged me to reflect on my aspirations for the next five years, assuring me that I should pursue them regardless of any obstacles,” the nominator shared. “Following our conversation, I felt more grounded and regained momentum in my research project.”
In summation, his student felt that Brown’s advice was “simple, yet enlightening, and exactly what I needed to hear at that moment.”
Hamsa Balakrishnan: Unequivocal advocacy
Balakrishnan is the William E. Leonhard Professor of Aeronautics and Astronautics at MIT. She leads the Dynamics, Infrastructure Networks, and Mobility (DINaMo) Research Group. Her current research interests are in the design, analysis, and implementation of control and optimization algorithms for large-scale cyber-physical infrastructures, with an emphasis on air transportation systems.
Her nominators commended Balakrishnan for her efforts to support and advocate for all of her students. In particular, she connects her students to academic mentors within the community, which contributes to their sense of acceptance within the field.
Balakrishnan’s mindfulness in respecting personal expression and her proactive approach to making everyone feel welcome have made a lasting impact on her students. “Hamsa’s efforts have encouraged me to bring my full self to the workplace,” one student wrote; “I will be forever grateful for her mentorship and kindness as an advisor.”
One student shared their experience of moving from a difficult advising situation to working with Balakrishnan, describing how her mentorship was crucial in the nominator’s successful return to research: “Hamsa’s mentorship has been vital to building up my confidence as a researcher, as she [often] provides helpful guidance and positive affirmation.”
Balakrishnan frequently gives her students freedom to independently explore and develop their research interests. When students wanted to delve into new areas like space research — far removed from her expertise in air traffic management and uncrewed aerial vehicles — Balakrishnan embraced the challenge and learned about these topics in order to provide better guidance.
One student described how Balakrishnan consistently encouraged the lab to work on topics that interested them. This led the student to develop a novel research topic and publish a first author paper within months of joining the lab.
Balakrishnan is deeply committed to promoting a healthy work-life balance for her students. She ensures that mentees do not feel compelled to overwork by encouraging them to take time off. Even if students do not have significant updates, Balakrishnan encourages weekly meetings to foster an open line of communication. She helps them set attainable goals, especially when it comes to tasks like paper reading and writing, and never pressures them to work late hours in order to meet paper or conference deadlines.
How nature organizes itself, from brain cells to ecosystems
Look around, and you’ll see it everywhere: the way trees form branches, the way cities divide into neighborhoods, the way the brain organizes into regions. Nature loves modularity — a limited number of self-contained units that combine in different ways to perform many functions. But how does this organization arise? Does it follow a detailed genetic blueprint, or can these structures emerge on their own?
A new study from MIT Professor Ila Fiete suggests a surprising answer.
In findings published Feb. 18 in Nature, Fiete, an associate investigator in the McGovern Institute for Brain Research and director of the K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center at MIT, reports that a mathematical model called peak selection can explain how modules emerge without strict genetic instructions. Her team’s findings, which apply to brain systems and ecosystems, help explain how modularity occurs across nature, no matter the scale.
Joining two big ideas
“Scientists have debated how modular structures form. One hypothesis suggests that various genes are turned on at different locations to begin or end a structure. This explains how insect embryos develop body segments, with genes turning on or off at specific concentrations of a smooth chemical gradient in the insect egg,” says Fiete, who is the senior author of the paper. Mikail Khona PhD '25, a former graduate student and K. Lisa Yang ICoN Center graduate fellow, and postdoc Sarthak Chandra also led the study.
Another idea, inspired by mathematician Alan Turing, suggests that a structure could emerge from competition — small-scale interactions can create repeating patterns, like the spots on a cheetah or the ripples in sand dunes.
Both ideas work well in some cases, but fail in others. The new research suggests that nature need not pick one approach over the other. The authors propose a simple mathematical principle called peak selection, showing that when a smooth gradient is paired with local interactions that are competitive, modular structures emerge naturally. “In this way, biological systems can organize themselves into sharp modules without detailed top-down instruction,” says Chandra.
Modular systems in the brain
The researchers tested their idea on grid cells, which play a critical role in spatial navigation as well as the storage of episodic memories. Grid cells fire in a repeating triangular pattern as animals move through space, but they don’t all work at the same scale — they are organized into distinct modules, each responsible for mapping space at slightly different resolutions.
No one knows how these modules form, but Fiete’s model shows that gradual variations in cellular properties along one dimension in the brain, combined with local neural interactions, could explain the entire structure. The grid cells naturally sort themselves into distinct groups with clear boundaries, without external maps or genetic programs telling them where to go. “Our work explains how grid cell modules could emerge. The explanation tips the balance toward the possibility of self-organization. It predicts that there might be no gene or intrinsic cell property that jumps when the grid cell scale jumps to another module,” notes Khona.
Modular systems in nature
The same principle applies beyond neuroscience. Imagine a landscape where temperatures and rainfall vary gradually over a space. You might expect species to be spread, and also to vary, smoothly over this region. But in reality, ecosystems often form species clusters with sharp boundaries — distinct ecological “neighborhoods” that don’t overlap.
Fiete’s study suggests why: local competition, cooperation, and predation between species interact with the global environmental gradients to create natural separations, even when the underlying conditions change gradually. This phenomenon can be explained using peak selection — and suggests that the same principle that shapes brain circuits could also be at play in forests and oceans.
A self-organizing world
One of the researchers’ most striking findings is that modularity in these systems is remarkably robust. Change the size of the system, and the number of modules stays the same — they just scale up or down. That means a mouse brain and a human brain could use the same fundamental rules to form their navigation circuits, just at different sizes.
The model also makes testable predictions. If it’s correct, grid cell modules should follow simple spacing ratios. In ecosystems, species distributions should form distinct clusters even without sharp environmental shifts.
Fiete notes that their work adds another conceptual framework to biology. “Peak selection can inform future experiments, not only in grid cell research but across developmental biology.”
Study: Climate change will reduce the number of satellites that can safely orbit in space
MIT aerospace engineers have found that greenhouse gas emissions are changing the environment of near-Earth space in ways that, over time, will reduce the number of satellites that can sustainably operate there.
In a study appearing today in Nature Sustainability, the researchers report that carbon dioxide and other greenhouse gases can cause the upper atmosphere to shrink. An atmospheric layer of special interest is the thermosphere, where the International Space Station and most satellites orbit today. When the thermosphere contracts, the decreasing density reduces atmospheric drag — a force that pulls old satellites and other debris down to altitudes where they will encounter air molecules and burn up.
Less drag therefore means extended lifetimes for space junk, which will litter sought-after regions for decades and increase the potential for collisions in orbit.
The team carried out simulations of how carbon emissions affect the upper atmosphere and orbital dynamics, in order to estimate the “satellite carrying capacity” of low Earth orbit. These simulations predict that by the year 2100, the carrying capacity of the most popular regions could be reduced by 50-66 percent due to the effects of greenhouse gases.
“Our behavior with greenhouse gases here on Earth over the past 100 years is having an effect on how we operate satellites over the next 100 years,” says study author Richard Linares, associate professor in MIT’s Department of Aeronautics and Astronautics (AeroAstro).
“The upper atmosphere is in a fragile state as climate change disrupts the status quo,” adds lead author William Parker, a graduate student in AeroAstro. “At the same time, there’s been a massive increase in the number of satellites launched, especially for delivering broadband internet from space. If we don’t manage this activity carefully and work to reduce our emissions, space could become too crowded, leading to more collisions and debris.”
The study includes co-author Matthew Brown of the University of Birmingham.
Sky fall
The thermosphere naturally contracts and expands every 11 years in response to the sun’s regular activity cycle. When the sun’s activity is low, the Earth receives less radiation, and its outermost atmosphere temporarily cools and contracts before expanding again during solar maximum.
In the 1990s, scientists wondered what response the thermosphere might have to greenhouse gases. Their preliminary modeling showed that, while the gases trap heat in the lower atmosphere, where we experience global warming and weather, the same gases radiate heat at much higher altitudes, effectively cooling the thermosphere. With this cooling, the researchers predicted that the thermosphere should shrink, reducing atmospheric density at high altitudes.
In the last decade, scientists have been able to measure changes in drag on satellites, which has provided some evidence that the thermosphere is contracting in response to something more than the sun’s natural, 11-year cycle.
“The sky is quite literally falling — just at a rate that’s on the scale of decades,” Parker says. “And we can see this by how the drag on our satellites is changing.”
The MIT team wondered how that response will affect the number of satellites that can safely operate in Earth’s orbit. Today, there are over 10,000 satellites drifting through low Earth orbit, which describes the region of space up to 1,200 miles (2,000 kilometers), from Earth’s surface. These satellites deliver essential services, including internet, communications, navigation, weather forecasting, and banking. The satellite population has ballooned in recent years, requiring operators to perform regular collision-avoidance maneuvers to keep safe. Any collisions that do occur can generate debris that remains in orbit for decades or centuries, increasing the chance for follow-on collisions with satellites, both old and new.
“More satellites have been launched in the last five years than in the preceding 60 years combined,” Parker says. “One of key things we’re trying to understand is whether the path we’re on today is sustainable.”
Crowded shells
In their new study, the researchers simulated different greenhouse gas emissions scenarios over the next century to investigate impacts on atmospheric density and drag. For each “shell,” or altitude range of interest, they then modeled the orbital dynamics and the risk of satellite collisions based on the number of objects within the shell. They used this approach to identify each shell’s “carrying capacity” — a term that is typically used in studies of ecology to describe the number of individuals that an ecosystem can support.
“We’re taking that carrying capacity idea and translating it to this space sustainability problem, to understand how many satellites low Earth orbit can sustain,” Parker explains.
The team compared several scenarios: one in which greenhouse gas concentrations remain at their level from the year 2000 and others where emissions change according to the Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathways (SSPs). They found that scenarios with continuing increases in emissions would lead to a significantly reduced carrying capacity throughout low Earth orbit.
In particular, the team estimates that by the end of this century, the number of satellites safely accommodated within the altitudes of 200 and 1,000 kilometers could be reduced by 50 to 66 percent compared with a scenario in which emissions remain at year-2000 levels. If satellite capacity is exceeded, even in a local region, the researchers predict that the region will experience a “runaway instability,” or a cascade of collisions that would create so much debris that satellites could no longer safely operate there.
Their predictions forecast out to the year 2100, but the team says that certain shells in the atmosphere today are already crowding up with satellites, particularly from recent “megaconstellations” such as SpaceX’s Starlink, which comprises fleets of thousands of small internet satellites.
“The megaconstellation is a new trend, and we’re showing that because of climate change, we’re going to have a reduced capacity in orbit,” Linares says. “And in local regions, we’re close to approaching this capacity value today.”
“We rely on the atmosphere to clean up our debris. If the atmosphere is changing, then the debris environment will change too,” Parker adds. “We show the long-term outlook on orbital debris is critically dependent on curbing our greenhouse gas emissions.”
This research is supported, in part, by the U.S. National Science Foundation, the U.S. Air Force, and the U.K. Natural Environment Research Council.
Study: Tuberculosis relies on protective genes during airborne transmission
Tuberculosis lives and thrives in the lungs. When the bacteria that cause the disease are coughed into the air, they are thrust into a comparatively hostile environment, with drastic changes to their surrounding pH and chemistry. How these bacteria survive their airborne journey is key to their persistence, but very little is known about how they protect themselves as they waft from one host to the next.
Now MIT researchers and their collaborators have discovered a family of genes that becomes essential for survival specifically when the pathogen is exposed to the air, likely protecting the bacterium during its flight.
Many of these genes were previously considered to be nonessential, as they didn’t seem to have any effect on the bacteria’s role in causing disease when injected into a host. The new work suggests that these genes are indeed essential, though for transmission rather than proliferation.
“There is a blind spot that we have toward airborne transmission, in terms of how a pathogen can survive these sudden changes as it circulates in the air,” says Lydia Bourouiba, who is the head of the Fluid Dynamics of Disease Transmission Laboratory, an associate professor of civil and environmental engineering and mechanical engineering, and a core faculty member in the Instiute for Medical Engineering and Science at MIT. “Now we have a sense, through these genes, of what tools tuberculosis uses to protect itself.”
The team’s results, appearing this week in the Proceedings of the National Academy of Sciences, could provide new targets for tuberculosis therapies that simultaneously treat infection and prevent transmission.
“If a drug were to target the product of these same genes, it could effectively treat an individual, and even before that person is cured, it could keep the infection from spreading to others,” says Carl Nathan, chair of the Department of Microbiology and Immunology and R.A. Rees Pritchett Professor of Microbiology at Weill Cornell Medicine.
Nathan and Bourouiba are co-senior authors of the study, which includes MIT co-authors and mentees of Bourouiba in the Fluids and Health Network: co-lead author postdoc Xiaoyi Hu, postdoc Eric Shen, and student mentees Robin Jahn and Luc Geurts. The study also includes collaborators from Weill Cornell Medicine, the University of California at San Diego, Rockefeller University, Hackensack Meridian Health, and the University of Washington.
Pathogen’s perspective
Tuberculosis is a respiratory disease caused by Mycobacterium tuberculosis, a bacterium that most commonly affects the lungs and is transmitted through droplets that an infected individual expels into the air, often through coughing or sneezing. Tuberculosis is the single leading cause of death from infection, except during the major global pandemics caused by viruses.
“In the last 100 years, we have had the 1918 influenza, the 1981 HIV AIDS epidemic, and the 2019 SARS Cov2 pandemic,” Nathan notes. “Each of those viruses has killed an enormous number of people. And as they have settled down, we are left with a ‘permanent pandemic’ of tuberculosis.”
Much of the research on tuberculosis centers on its pathophysiology — the mechanisms by which the bacteria take over and infect a host — as well as ways to diagnose and treat the disease. For their new study, Nathan and Bourouiba focused on transmission of tuberculosis, from the perspective of the bacterium itself, to investigate what defenses it might rely on to help it survive its airborne transmission.
“This is one of the first attempts to look at tuberculosis from the airborne perspective, in terms of what is happening to the organism, at the level of being protected from these sudden changes and very harsh biophysical conditions,” Bourouiba says.
Critical defense
At MIT, Bourouiba studies the physics of fluids and the ways in which droplet dynamics can spread particles and pathogens. She teamed up with Nathan, who studies tuberculosis, and the genes that the bacteria rely on throughout their life cycle.
To get a handle on how tuberculosis can survive in the air, the team aimed to mimic the conditions that the bacterium experiences during transmission. The researchers first looked to develop a fluid that is similar in viscosity and droplet sizes to what a patient would cough or sneeze out into the air. Bourouiba notes that much of the experimental work that has been done on tuberculosis in the past has been based on a liquid solution that scientists use to grow the bacteria. But the team found that this liquid has a chemical composition that is very different from the fluid that tuberculosis patients actually cough and sneeze into the air.
Additionally, Bourouiba notes that fluid commonly sampled from tuberculosis patients is based on sputum that a patient spits out, for instance for a diagnostic test. “The fluid is thick and gooey and it’s what most of the tuberculosis world considers to represent what is happening in the body,” she says. “But it’s extraordinarily inefficient in spreading to others because it’s too sticky to break into inhalable droplets.”
Through Bourouiba’s work with fluid and droplet physics, the team determined the more realistic viscosity and likely size distribution of tuberculosis-carrying microdroplets that would be transmitted through the air. The team also characterized the droplet compositions, based on analyses of patient samples of infected lung tissues. They then created a more realistic fluid, with a composition, viscosity, surface tension and droplet size that is similar to what would be released into the air from exhalations.
Then, the researchers deposited different fluid mixtures onto plates in tiny individual droplets and measured in detail how they evaporate and what internal structure they leave behind. They observed that the new fluid tended to shield the bacteria at the center of the droplet as the droplet evaporated, compared to conventional fluids where bacteria tended to be more exposed to the air. The more realistic fluid was also capable of retaining more water.
Additionally, the team infused each droplet with bacteria containing genes with various knockdowns, to see whether the absence of certain genes would affect the bacteria’s survival as the droplets evaporated.
In this way, the team assessed the activity of over 4,000 tuberculosis genes and discovered a family of several hundred genes that seemed to become important specifically as the bacteria adapted to airborne conditions. Many of these genes are involved in repairing damage to oxidized proteins, such as proteins that have been exposed to air. Other activated genes have to do with destroying damaged proteins that are beyond repair.
“What we turned up was a candidate list that’s very long,” Nathan says. “There are hundreds of genes, some more prominently implicated than others, that may be critically involved in helping tuberculosis survive its transmission phase.”
The team acknowledges the experiments are not a complete analog of the bacteria’s biophysical transmission. In reality, tuberculosis is carried in droplets that fly through the air, evaporating as they go. In order to carry out their genetic analyses, the team had to work with droplets sitting on a plate. Under these constraints, they mimicked the droplet transmission as best they could, by setting the plates in an extremely dry chamber to accelerate the droplets’ evaporation, analogous to what they would experience in flight.
Going forward, the researchers have started experimenting with platforms that allow them to study the droplets in flight, in a range of conditions. They plan to focus on the new family of genes in even more realistic experiments, to confirm whether the genes do indeed shield Mycobacterium tuberculosis as it is transmitted through the air, potentially opening the way to weakening its airborne defenses.
“The idea of waiting to find someone with tuberculosis, then treating and curing them, is a totally inefficient way to stop the pandemic,” Nathan says. “Most people who exhale tuberculosis do not yet have a diagnosis. So we have to interrupt its transmission. And how do you do that, if you don’t know anything about the process itself? We have some ideas now.”
This work was supported, in part, by the National Institutes of Health, the Abby and Howard P. Milstein Program in Chemical Biology and Translational Medicine, and the Potts Memorial Foundation, the National Science Foundation Center for Analysis and Prediction of Pandemic Expansion (APPEX), Inditex, NASA Translational Research Institute for Space Health , and Analog Devices, Inc.