MIT Latest News

Faces of MIT: Ylana Lopez
Ylana Lopez oversees programs and events at the Martin Trust Center for MIT Entrepreneurship. The Trust Center offers more than 60 entrepreneurship and innovation courses across campus, a dedicated entrepreneurship and innovation track for students pursuing their MBA, online courses for self-learners at MIT and around the globe, and programs for people both affiliated and not affiliated with the Institute. As assistant director, academics and events, at the Trust Center, Lopez leads an array of programs and events, while also assisting students and faculty members.
After graduating from Rutgers University, Lopez conducted research in human-computer interaction at Princeton University. After Princeton, she worked for the health care software company Epic Systems, in quality management and user experience. While at Epic Systems, she was simultaneously working on a startup with two of her friends, Kiran Sharma and Dinuri Rupasinghe. One of the startup co-founders, who was an MIT undergraduate student, applied for them to take part in the Trust Center’s flagship startup accelerator delta v, and the trio was accepted.
Delta v is a highly competitive entrepreneurial program, with 20 to 25 startup teams accepted each year, which runs annually from June to August. At the end of each month, there is a mock board meeting with a board of advisors consisting of industry experts specifically curated to support each startup team’s goals. Programming, coaching sessions, workshops, lectures, and pitch practices take place throughout delta v, and the program culminates in September with a demo day in Kresge Auditorium with thousands of people in attendance.
Prior to delta v, Lopez decided to leave her full-time job to focus solely on the startup. Once she and her partners went their separate ways, she was looking for a career change, which led her to reflect on her formative summer at MIT. In spring 2023, Lopez applied for an open position at the Trust Center to be an academic coordinator. Soon after, she was offered and accepted the role, and a year later was promoted to assistant director for academics and events. Lopez’s time at MIT has come full circle as her current position includes being a co-director of delta v. Like many of her colleagues who are serial entrepreneurs, Lopez has also started a design studio on the side in the past year called Mr. Mango, providing creative design services for film and music industries.
Lopez has always loved education and planned to become a teacher before deciding to enter the field of technology. Because of this, she describes working at MIT, and being a staff member in the Trust Center, as having the best of both worlds. While delta v is the flagship accelerator, Lopez also supports shorter programs including MIT Fuse, a three-week, hands-on startup sprint that takes place during Independent Activities Period (IAP), and t=0, a festival of events that kicks off each school year to promote entrepreneurship at MIT. In addition to delta v, other programs are available to those outside of MIT, as the Trust Center sees the value of bringing together an ecosystem that is not solely composed of those at the Institute.
At the core of the Trust Center is the belief that entrepreneurship is a tool to change the world. The staff also believe entrepreneurship can be taught, and is not just for a select few. Lopez and her colleagues are highly collaborative and work in an office space that they affectionately call “the bullpen.” The office layout and shared nature of their work mean that no one is a stranger. With at least two events per week, late nights can turn into early mornings, but Lopez and her colleagues love what they do. She is grateful for the growth she has had in her time at the Trust Center and the opportunity to be a part of a motivated, fun, and talented team.
Trust Center managing director Bill Aulet, the Ethernet Inventors Professor of the Practice of Entrepreneurship, cannot sing Lopez’s praises enough. “In my now almost two decades running this center, I have never seen anyone better at really understanding the students, our customers, and translating that back into high-quality and creative programs that delight them and serve the mission of our center, MIT Sloan, and MIT more broadly. We are so fortunate to have her.”
Soundbytes
Q: What is your favorite project that you have worked on?
A: This semester we piloted the Martin Trust Center Startup Pass. It is an opportunity for startups, regardless of what stage they are in, to have a daily, dedicated workspace at the Trust Center to make progress on their ventures. We set aside half of our space for what we call “the beehive” for startups to work alongside other founders and active builders at MIT. It’s great for students to sit alongside people who are building awesome things and will provide feedback, offer support, and really build a community that is entirely based off the spirit and collaboration that naturally comes to entrepreneurs. Entrepreneurship can be lonely; therefore, a lot of our efforts go toward helping build networks that make it less so. In just one semester, we’ve already created a community of over 80 founders across MIT!
I’m also excited about revamping one of our rooms into a creative studio. We noticed that startups could benefit from having a space that has capabilities for creating content like podcasts, photography, videography, and other types of creative work. Those things are important in entrepreneurship, so we are currently cultivating a space that any entrepreneur at MIT can utilize.
Q: How would you describe the MIT community?
A: We have such a wonderful community here. The Trust Center supports all of MIT, so we have many programs that allow us to see a lot of people. There can be silos, so it’s great that we bring people together, regardless of their backgrounds, experience, or interests, in one place to become entrepreneurs. The MIT community is a group of inspiring, passionate people who are very welcoming. It’s a very exciting community to be a part of.
Q: What advice would you give someone who is starting a job at MIT?
A: If your day-to-day is typically in one office or setting, over time it can be easy to find yourself in a bubble. I highly recommend breaking out of your bubble by making the effort to meet as many people outside of the group that you work with directly as possible. I have met a number of people across different departments, even if we don’t have much direct overlap in terms of work, and they have been incredibly helpful, gracious, and welcoming. You never know if an introductory or impromptu conversation with someone might lead to an awesome collaboration or new initiative. It’s great being in a community with so many talented people.
MIT and Mass General Brigham launch joint seed program to accelerate innovations in health
Leveraging the strengths of two world-class research institutions, MIT and Mass General Brigham (MGB) recently celebrated the launch of the MIT-MGB Seed Program. The new initiative, which is supported by Analog Devices Inc. (ADI), will fund joint research projects led by researchers at MIT and Mass General Brigham. These collaborative projects will advance research in human health, with the goal of developing next-generation therapies, diagnostics, and digital tools that can improve lives at scale.
The program represents a unique opportunity to dramatically accelerate innovations that address some of the most urgent challenges in human health. By supporting interdisciplinary teams from MIT and Mass General Brigham, including both researchers and clinicians, the seed program will foster groundbreaking work that brings together expertise in artificial intelligence, machine learning, and measurement and sensing technologies with pioneering clinical research and patient care.
“The power of this program is that it combines MIT’s strength in science, engineering, and innovation with Mass General Brigham’s world-class scientific and clinical research. With the support and incentive to work together, researchers and clinicians will have the freedom to tackle compelling problems and find novel ways to overcome them to achieve transformative changes in patient care,” says Sally Kornbluth, president of MIT.
“The MIT-MGB Seed Program will enable cross-disciplinary collaboration to advance transformative research and breakthrough science. By combining the collective strengths and expertise of our great institutions, we can transform medical care and drive innovation and discovery with speed,” says Anne Klibanski, president and CEO of Mass General Brigham.
The initiative is funded by a gift from ADI. Over the next three years, the ADI Fund for Health and Life Sciences will support approximately six joint projects annually, with funding split between the two institutions.
“The converging domains of biology, medicine, and computing promise a new era of health-care efficacy, efficiency, and access. ADI has enjoyed a long and fruitful history of collaboration with MIT and Mass General Brigham, and we are excited by this new initiative’s potential to transform the future of patient care,” adds Vincent Roche, CEO and chair of the board of directors at ADI.
In addition to funding, teams selected for the program will have access to entrepreneurial workshops, including some hosted by The Engine — an MIT-built venture firm focused on tough tech. These sessions will connect researchers with company founders, investors, and industry leaders, helping them chart a path from breakthrough discoveries in the lab to real-world impact.
The program will launch an open call for proposals to researchers at MIT and Mass General Brigham. The first cohort of funded projects is expected to launch in fall 2025. Awardees will be selected by a joint review committee composed of MIT and Mass General Brigham experts.
According to MIT’s faculty lead for the MIT-MGB Seed Program, Alex K. Shalek, building collaborative research teams with leaders from both institutions could help fill critical gaps that often impede innovation in health and life sciences. Shalek also serves as director of the Institute for Medical Engineering & Science (IMES), the J. W. Kieckhefer Professor in IMES and Chemistry, and an extramural member of the Koch Institute for Integrative Cancer Research.
“Clinicians often see where current interventions fall short, but may lack the scientific tools or engineering expertise needed to develop new ones. Conversely, MIT researchers may not fully grasp these clinical challenges or have access to the right patient data and samples,” explains Shalek, who is also a member of the Ragon Institute of Mass General Brigham, MIT, and Harvard. “By supporting bilateral collaborations and building a community across disciplines, this program is poised to drive critical advances in diagnostics, therapeutics, and AI-driven health applications.”
Emery Brown, a practicing anesthesiologist at Massachusetts General Hospital, will serve alongside Shalek as Mass General Brigham’s faculty lead for the program.
“The MIT-MGB Seed Program creates a perfect storm. The program will provide an opportunity for MIT faculty to bring novel science and engineering to attack and solve important clinical problems,” adds Brown, who is also the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT. “The pursuit of solutions to important and challenging clinical problems by Mass General Brigham physicians and scientists will no doubt spur MIT scientists and engineers to develop new technologies, or find novel applications of existing technologies.”
The MIT-MGB Seed Program is a flagship initiative in the MIT Health and Life Sciences Collaborative (MIT HEALS). It reflects MIT HEALS’ core mission to establish MIT as a central hub for health and life sciences innovation and translation, and to leverage connections with other world-class research institutions in the Boston area.
“This program exemplifies the power of interdisciplinary research,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of engineering, and head of MIT HEALS. “It creates a critical bridge between clinical practice and technological innovation — two areas that must be deeply connected to advance real-world solutions.”
The program’s launch was celebrated at a special event at MIT’s Samberg Conference Center on March 31.
Using generative AI to help robots jump higher and land safely
Diffusion models like OpenAI’s DALL-E are becoming increasingly useful in helping brainstorm new designs. Humans can prompt these systems to generate an image, create a video, or refine a blueprint, and come back with ideas they hadn’t considered before.
But did you know that generative artificial intelligence (GenAI) models are also making headway in creating working robots? Recent diffusion-based approaches have generated structures and the systems that control them from scratch. With or without a user’s input, these models can make new designs and then evaluate them in simulation before they’re fabricated.
A new approach from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) applies this generative know-how toward improving humans’ robotic designs. Users can draft a 3D model of a robot and specify which parts they’d like to see a diffusion model modify, providing its dimensions beforehand. GenAI then brainstorms the optimal shape for these areas and tests its ideas in simulation. When the system finds the right design, you can save and then fabricate a working, real-world robot with a 3D printer, without requiring additional tweaks.
The researchers used this approach to create a robot that leaps up an average of roughly 2 feet, or 41 percent higher than a similar machine they created on their own. The machines are nearly identical in appearance: They’re both made of a type of plastic called polylactic acid, and while they initially appear flat, they spring up into a diamond shape when a motor pulls on the cord attached to them. So what exactly did AI do differently?
A closer look reveals that the AI-generated linkages are curved, and resemble thick drumsticks (the musical instrument drummers use), whereas the standard robot’s connecting parts are straight and rectangular.
Better and better blobs
The researchers began to refine their jumping robot by sampling 500 potential designs using an initial embedding vector — a numerical representation that captures high-level features to guide the designs generated by the AI model. From these, they selected the top 12 options based on performance in simulation and used them to optimize the embedding vector.
This process was repeated five times, progressively guiding the AI model to generate better designs. The resulting design resembled a blob, so the researchers prompted their system to scale the draft to fit their 3D model. They then fabricated the shape, finding that it indeed improved the robot’s jumping abilities.
The advantage of using diffusion models for this task, according to co-lead author and CSAIL postdoc Byungchul Kim, is that they can find unconventional solutions to refine robots.
“We wanted to make our machine jump higher, so we figured we could just make the links connecting its parts as thin as possible to make them light,” says Kim. “However, such a thin structure can easily break if we just use 3D printed material. Our diffusion model came up with a better idea by suggesting a unique shape that allowed the robot to store more energy before it jumped, without making the links too thin. This creativity helped us learn about the machine’s underlying physics.”
The team then tasked their system with drafting an optimized foot to ensure it landed safely. They repeated the optimization process, eventually choosing the best-performing design to attach to the bottom of their machine. Kim and his colleagues found that their AI-designed machine fell far less often than its baseline, to the tune of an 84 percent improvement.
The diffusion model’s ability to upgrade a robot’s jumping and landing skills suggests it could be useful in enhancing how other machines are designed. For example, a company working on manufacturing or household robots could use a similar approach to improve their prototypes, saving engineers time normally reserved for iterating on those changes.
The balance behind the bounce
To create a robot that could jump high and land stably, the researchers recognized that they needed to strike a balance between both goals. They represented both jumping height and landing success rate as numerical data, and then trained their system to find a sweet spot between both embedding vectors that could help build an optimal 3D structure.
The researchers note that while this AI-assisted robot outperformed its human-designed counterpart, it could soon reach even greater new heights. This iteration involved using materials that were compatible with a 3D printer, but future versions would jump even higher with lighter materials.
Co-lead author and MIT CSAIL PhD student Tsun-Hsuan “Johnson” Wang says the project is a jumping-off point for new robotics designs that generative AI could help with.
“We want to branch out to more flexible goals,” says Wang. “Imagine using natural language to guide a diffusion model to draft a robot that can pick up a mug, or operate an electric drill.”
Kim says that a diffusion model could also help to generate articulation and ideate on how parts connect, potentially improving how high the robot would jump. The team is also exploring the possibility of adding more motors to control which direction the machine jumps and perhaps improve its landing stability.
The researchers’ work was supported, in part, by the National Science Foundation’s Emerging Frontiers in Research and Innovation program, the Singapore-MIT Alliance for Research and Technology’s Mens, Manus and Machina program, and the Gwangju Institute of Science and Technology (GIST)-CSAIL Collaboration. They presented their work at the 2025 International Conference on Robotics and Automation.
Nth Cycle is bringing critical metals refining to the U.S.
Much like Middle Eastern oil production in the 1970s, China today dominates the global refinement of critical metals that serve as the foundation of the United States economy. In the 1970s, America’s oil dependence led to shortages that slowed growth and brought huge spikes in prices. But in recent decades, U.S. fracking technology created a new way to extract oil, transforming the nation from one of the world’s largest oil importers to one of the largest exporters.
Today the U.S. needs another technological breakthrough to secure domestic supplies of metals like lithium, cobalt, copper, and rare earth elements, which are needed for everything from batteries to jet engines and electric motors. Nth Cycle thinks it has a solution.
The company was co-founded by MIT Associate Professor Desirée Plata, CEO Megan O’Connor, and Chief Scientist Chad Vecitis to recover critical metals from industrial waste and ores using a patented, highly efficient technology known as electro-extraction.
“America is an incredibly resource-rich nation — it’s just a matter of extracting and converting those resources for use. That’s the role of refining,” says O’Connor, who worked on electro-extraction as a PhD student with Plata, back when both were at Duke University. “By filling that gap in the supply chain, we can make the United States the largest producer of critical metals in the world.”
Since last year, Nth Cycle has been producing cobalt and nickel using its first commercial system in Fairfield, Ohio. The company’s modular refining systems, which are powered by electricity instead of fossil fuels, can be deployed in a fraction of the time of traditional metal refining plants. Now, Nth Cycle aims to deploy its modular systems around the U.S. and Europe to establish new supply chains for the materials that power our economy.
“About 85 percent of the world’s critical minerals are refined in China, so it’s an economic and national security issue for us,” O’Connor says. “Even if we mine the materials here — we do have one operational nickel mine in Michigan — we then ship it overseas to be refined. Those materials are required components of multiple industries. Everything from our phones to our cars to our defense systems depend on them. I like to say critical minerals are the new oil.”
From waste, an opportunity
In 2014, O’Connor and Plata attended a talk by Vecitis, then a professor at Harvard University, in which he discussed his work using electrochemical filters to destroy contaminants in pharmaceutical wastewater. As part of the research, he noticed the material was reacting with metal to create crystalline copper in the filters. Following the talk, Plata asked Vecitis if he’d ever thought about using the approach for metal separation. He hadn’t but was excited to try.
At the time, Plata and O’Connor were studying mineral-dense wastewater created as a byproduct of hydraulic fracturing for oil and gas.
“The original thought was: Could we use this technology to extract those metals?” O’Connor recalls.
The focus shifted to using the technology to recover metals from electronics waste, including sources like old phones, electric vehicles, and smartwatches.
Today, manufacturers and electronic waste facilities grind up end-of-life materials and send it to huge chemical refineries overseas, which heat up the metal into a molten liquid and put it through a series of acids and bases to distill the waste back into a pure form of the desired metal.
“Each of those acids and bases have to be transported as hazardous goods, and the process for making them has a large greenhouse gas and energy footprint,” Plata explains. “That makes the economics difficult to square in anything but huge, centralized facilities — and even then it’s a challenge.”
The United States and Europe have an abundance of end-of-life scrap material, but it’s dispersed, and environmental regulations have left the West few scalable refining options.
Instead of building a refinery, Nth Cycle’s team has built a modular refining system — dubbed “The Oyster” — which can reduce costs, waste, and time-to-market by being co-located onsite with recyclers, miners, and manufacturers. The Oyster uses electricity, chemical precipitation, and filtration to create the same metal refining chemicals as traditional methods. Today, the system can process more than 3,000 metric tons of scrap per year and be customized to produce different metals.
“Electro-extraction is one of the cleanest ways to recover metal,” Plata says.
Nth Cycle received early support from the U.S. Department of Energy, and when Plata came to MIT in 2018, Nth Cycle became part of the MIT Industrial Liaison Program’s STEX25 startup accelerator.
“What’s so important about being at a place like MIT is the entrepreneurial ecosystem and the ‘tough tech’ ethos of Cambridge,” Plata explains. “That’s been hugely important to the success of Nth Cycle and one of the reasons we moved the company to the greater Boston area. Being able to access talent and patient capital was key.”
Onshoring metal refining
Plata says one of the proudest moments of her career came last year at the groundbreaking ceremony for Nth Cycle’s first mixed hydroxide (nickel and cobalt) production facility in Ohio. Many of Nth Cycle’s new employees at the facility had previously worked at auto and chemical facilities in the town but are now working for what Nth Cycle calls the first commercial nickel refining facility for scrap in the country.
“O’Connor’s vision of elevating people while elevating the economy is an inspiring standard of practice,” Plata says.
Nth Cycle will own and operate other Oyster systems in a business model O’Connor describes as refining as a service, where customers own the final product. The company is looking to partner with scrap yards and industrial scrap collection facilities as well as manufacturers that generate waste.
Nth Cycle is mostly working to recover metals from batteries today, but it has also used its process to recover cobalt and nickel from spent catalyst material in the oil and gas industry. Moving forward, Nth Cycle hopes to apply its process to the biggest waste sources of them all: mining.
“The world needs more critical minerals like cobalt, nickel, lithium, and copper,” O’Connor says. “The only two places you can get those materials are from recycling and mining, and both of those sources need to be chemically refined. That’s where Nth Cycle comes in. A lot of people have a negative perception of mining, but if you have a technology that can reduce waste and reduce emissions, that’s how you get more mining in regions like the U.S. That’s the impact we want this technology to have in the Western world.”
Face-to-face with Es Devlin
Es Devlin, the winner of the 2025 Eugene McDermott Award in the Arts at MIT, creates settings for people to gather — whether it’s a few people in a room or crowds swelling a massive stadium — arenas in which to dissolve one’s individual sense of self into the greater collective. She herself contains multitudes; equally at home with 17th century metaphysical English poet John Donne, 21st century icon of music and fashion Lady Gaga, or Italian theoretical physicist Carlo Rovelli.
In the course of the artist and designer’s three-decade career, Devlin has created an exploded paint interpretation of the U.K. flag for the Closing Ceremony of the 2012 London Olympics, a box of illuminated rainfall for a production of the Crucible, a 65-foot diameter AI-generated poetry pavilion for the World Expo, an indoor forest for the COP26 Climate Conference, a revolving luminous library for over 200,000 in Milan, Beyonce’s Renaissance tour, and two Super Bowl halftime shows. But Devlin also works on a much smaller scale: the human face. Her world-building is rooted in the earliest technologies of reading and drawing: the simple acts of the eye and hand.
For Congregation in 2024, she made chalk and charcoal drawings of 50 strangers. Before this project, Devlin says, she had most likely drawn around 50 portraits in total over the course of her practice — mostly family or friends, or the occasional covert sketch of a stranger on the subway. But drawing strangers required a different form of attention. “I was looking at another, who often looked different from me in many ways. Their skin pigmentation might be different, the orientation of their nose, eyes, and forehead might be other to what I was used to seeing in the mirror, and I was fraught with anxiety and concern to do them justice, and at pains not to offend,” she recalls.
As she drew, she warded off the desire to please, feeling her unconscious biases surface, but eventually, in this wordless space, found herself in intense communion. “I gradually became absorbed in each person's eyes. It felt like falling into a well, but knowing I was held by an anchor, that I would be drawn out,” she says, “In each case, I thought, ‘well, this is it. Here we are. This is the answer to everything, the continuity between me and the other.’” She calls each sitter a co-creator of the piece.
Devlin’s project inspired a series of drawing sessions at MIT, where students, faculty, and staff across the Institute — without any prior drawing experience necessary — were paired with strangers and asked to draw each other in silence for five minutes. In these 11 sessions held over the course of the semester, participants practiced rendering a stranger’s features on the page, and then the sitter spoke and shared their story. There were no guidelines about what to say, or even how to draw — but the final product mattered less than the process, the act of being in another’s presence and looking deeply.
If pop concerts are the technology to transform private emotional truth into public feeling — the lyrics sung to the bathroom mirror now belted in choruses of thousands — Devlin finds that same stripped-down intimacy in all her works, asking us to bare the most elemental versions of ourselves.
“We’re in a moment where we’re really having a hard time speaking to one another. We wanted to find a way to take the lessons from the work that Es Devlin has done to practice listening to one another and building connections within this very broad community that we call MIT,” says Sara Brown, an associate professor in the Music and Theater Arts Section who facilitated drawing sessions. The drawings were then displayed in a pop-up group exhibition, MIT Face to Face, where 80 easels were positioned to face the center of the room like a two-dimensional choir, forming a communal portrait of MIT.
During her residency at MIT, Devlin toured student labs, spoke with students and faculty from theater arts, discussed the creative uses of AI with technologists and curators, and met with neuroscientists. “I had my brain scanned two days ago at very short notice,” she says, “a functioning MRI scan to help me understand more deeply the geography and architecture of my own mind.”
“The question I get asked most is, ‘How do you retain a sense of self when you are in collaboration with another, especially if it’s another who is celebrated and widely revered?’” she says, “And I found an answer to that question: You have to be prepared to lose yourself. You have to be prepared to sublimate your sense of self, to see through the eyes of another, and through that practice, you will begin to find more deeply who you are.”
She is influenced by the work of philosopher and neuroscientist Iain Gilchrist, who suggests that a society dominated by the mode of attention of the left hemisphere — the part of the brain broadly in charge of language processing and logical thinking — also needs to be balanced by the right hemisphere, which operates nonverbal modes of attention. While the left hemisphere categorizes and separates, the right attends to the universe as an oceanic whole. And it is under the power of the right hemisphere’s mode of attention, Devlin says, that she enters the flow state of drawing, a place outside the confines of language, that enables her to feel a greater sense of unity with the entire cosmos.
Whether it’s drawing a stranger with a pencil and paper, or working with collaborators, Devlin believes the key to self understanding is, paradoxically, losing oneself.
In all her works, she seeks the ecstatic moment when the boundaries between self and world become more porous. In a time of divisiveness, her message is important. “I think it’s really to do with fear of other,” she says, “and I believe that dislodging fear is something that has to be practiced, like learning a new instrument.” What would it be like to regain a greater equilibrium between the modes of attention of both hemispheres of the brain, the sense of distinctness and the cosmic whole at once? “It could be absolutely definitive, and potentially stave off human extinction,” she says, “It’s at that level of urgency.”
Presented by the Council for the Arts at MIT, the Eugene McDermott Award for the Arts at MIT was first established by Margaret McDermott in honor of her husband, a legacy that is now carried on by their daughter, Mary McDermott Cook. The Eugene McDermott Award plays a unique role at the Institute by bringing the MIT community together to support MIT’s principal arts organizations: the Department of Architecture; the Program in Art, Culture and Technology; the Center for Art, Science and Technology; the List Visual Arts Center; the MIT Museum; and Music and Theater Arts. During her residency at MIT she presented a week of discussions with the MIT community’s students and faculty in theater, architecture, computer science, MIT Museum Studio, and more. She also presented a public artist talk with Museum of Modern Art Senior Curator of Architecture and Design Paola Antonelli that was one of the culminating events of the MIT arts festival, Artfinity.
Summer 2025 reading from MIT
Summer is the perfect time to curl up with a good book — and MIT authors have had much to offer in the past year. The following titles represent some of the books published in the past 12 months by MIT faculty and staff. In addition to links for each book from its publisher, the MIT Libraries has compiled a helpful list of the titles held in its collections.
Looking for more literary works from the MIT community? Enjoy our book lists from 2024, 2023, 2022, and 2021.
Happy reading!
Science
“So Very Small: How Humans Discovered the Microcosmos, Defeated Germs — and May Still Lose the War Against Infectious Disease” (Penguin Random House, 2025)
By Thomas Levenson, professor of science writing
For centuries, people in the West, believing themselves to hold God-given dominion over nature, thought too much of humanity and too little of microbes. Nineteenth-century scientists finally made the connection. Life-saving methods to control infections and contain outbreaks soon followed. Next came the antibiotic era in the 1930s. Yet, less than a century later, the promise of that revolution is receding due to years of overuse. Is our self-confidence getting the better of us again?
“The Miraculous from the Material: Understanding the Wonders of Nature” (Penguin Random House, 2024)
By Alan Lightman, professor of the practice of humanities
Nature is capable of extraordinary phenomena. Standing in awe of those phenomena, we experience a feeling of connection to the cosmos. For Lightman, just as remarkable is that all of what we see around us — soap bubbles, scarlet ibises, shooting stars — are made out of the same material stuff and obey the same rules and laws. Pairing 36 full-color photos evoking some of nature’s most awe-inspiring phenomena with personal essays, “The Miraculous from the Material” explores the fascinating science underlying the natural world.
Technology and society
“The Analytics Edge in Healthcare” (Dynamic Ideas, 2025)
By Dimitris Bertsimas, vice provost for MIT Open Learning, Boeing Leaders for Global Operations Professor of Management, associate dean for business analytics, and professor of operations research; Agni Orfanoudaki, and Holly Wiberg
Analytics is transforming health care operations, empowering medical professionals and administrators to leverage data and models to make better decisions. This book provides a practical introduction to this exciting field. The first part establishes the technical foundations of health care analytics, spanning machine learning and optimization. The second part presents integrated case studies that cover a wide range of clinical specialties and problem types using descriptive, predictive, and prescriptive analytics.
“Longevity Hubs: Regional Innovation for Global Aging” (MIT Press, 2024)
Edited by Joseph F. Coughlin, senior research scientist and MIT AgeLab director, and Luke Yoquinto, MIT AgeLab research associate
Populations around the world are aging, and older adults’ economic influence stands to grow markedly in future decades. This volume brings together entrepreneurs, researchers, designers, public servants, and others to address the multifaceted concerns of aging societies and to explore the possibility that certain regions will distinguish themselves as longevity hubs: home to disproportionate economic and innovative activity for older populations.
“Data, Systems, and Society: Harnessing AI for Societal Good” (Cambridge University Press, 2025)
By Munther Dahleh, the William A. Coolidge Professor of Electrical Engineering and Computer Science and director of the Institute for Data, Systems, and Society (IDSS)
Harnessing the power of data and artificial intelligence (Al) methods to tackle complex societal challenges requires transdisciplinary collaborations across academia, industry, and government. In this book, Dahleh, founder of the MIT Institute for Data, Systems, and Society (IDSS), offers a blueprint for researchers, professionals, and institutions to create approaches to problems of high societal value using innovative, holistic, data-driven methods.
“SuperShifts: Transforming How We Live, Learn, and Work in the Age of Intelligence” (Wiley, 2025)
By Ja-Naé Duane, academic research fellow at the MIT Center for Information Systems Research, and Steve Fisher
This book describes how we’re at the end of one 200-year arc and embarking on another. With this new age of intelligence, Duane and Fisher highlight the catalysts for change currently affecting individuals, businesses, and society as a whole. They also provide a model for transformation that utilizes a holistic view of making radical change through three lenses: you as a leader, your organization, and society.
“Tech Agnostic: How Technology Became the World’s Most Powerful Religion, and Why It Desperately Needs a Reformation” (MIT Press, 2024)
By Greg Epstein, humanist chaplain
Today’s technology has overtaken religion as the chief influence on 21st-century life and community. In “Tech Agnostic,” Epstein explores what it means to be a critical thinker with respect to this new faith. Encouraging readers to reassert their common humanity beyond the seductive sheen of “tech,” this book argues for tech agnosticism — not worship — as a way of life.
“The New Lunar Society: An Enlightenment Guide to the Next Industrial Revolution” (MIT Press, 2025)
By David Mindell, the Dibner Professor of the History of Engineering and Manufacturing and professor of aeronautics and astronautics
Climate change, global disruption, and labor scarcity are forcing us to rethink the underlying principles of industrial society. In this book, Mindell envisions this new industrialism from the fundamentals, drawing on the 18th century when first principles were formed at the founding of the Industrial Revolution. While outlining the new industrialism, he tells the story of the Lunar Society, a group of engineers, scientists, and industrialists who came together to apply the principles of the Enlightenment to industrial processes.
“Output: An Anthology of Computer-Generated Text, 1953–2023” (MIT Press, 2024)
Edited by Nick Montfort, professor of digital media, and Lillian-Yvonne Bertram
The discussion of computer-generated text has recently reached a fever pitch but largely omits the long history of work in this area — text generation, as it happens, was not invented yesterday in Silicon Valley. This anthology aims to correct that omission by gathering seven decades of English-language texts produced by generation systems and software, long before ChatGPT and Claude.
Education, work, and innovation
“Retiring: Creating a Life That Works for You” (Routledge, 2025)
By Lotte Bailyn, the T Wilson Professor of Management, Emerita and professor emerita of work and organization studies; Teresa M. Amabile; Marcy Crary; Douglas T. Hall; and Kathy E. Kram
Whether they’re one of the 73 million baby boomers reaching their full retirement benefit age or zoomers just entering the workforce, at some point most working Americans will retire. The optimal approach to retirement is unique to each person, but this book offers wisdom and anecdotes from more than 120 people and detailed interviews with 14 “stars” regarding their retirement transitions.
“Accelerating Innovation: Competitive Advantage through Ecosystem Engagement” (MIT Press, 2025)
By Phil Budden, senior lecturer of technological Innovation, entrepreneurship, and strategic management; and Fiona Murray, associate dean for innovation, the William Porter Professor of Entrepreneurship, and professor of technological innovation, entrepreneurship, and strategic management
Leaders in large organizations face continuous pressure to innovate, and few possess the internal resources needed to keep up with rapid advances in science and technology. But looking beyond their own organizations, most face a bewildering landscape of external resources. In “Accelerating Innovation,” leaders will find a practical guide to this external landscape. Budden and Murray provide directions for navigating innovation ecosystems — those hotspots worldwide where researchers, entrepreneurs, and investors congregate.
“Writing, Thinking, and the Brain: How Neuroscience Can Improve Writing Instruction” (Teachers College Press, 2024)
By Joel R. S. Nazareno, learning science and education outreach specialist at MIT Open Learning; Tracey Tokuhama-Espinosa; and Christopher Rappleye
Writing is the highest form of thinking, as evidenced by neuroimaging that shows how more neural networks are activated simultaneously during writing than during any other cognitive activity. This book will help teachers understand how the brain learns to write by unveiling 15 stages of thinking that underpin the writing process, along with targeted ways to stimulate them to maximize each individual’s writing potential.
“Entrepreneurship: Choice and Strategy” (Norton Economics, 2024)
By Erin L. Scott, senior lecturer of technological innovation, entrepreneurship, and strategic management; Scott Stern, the David Sarnoff Professor of Management of Technology and professor of technological innovation, entrepreneurship, and strategic management; and Joshua Gans
Building on more than two decades of academic research with thousands of companies and MIT students, Scott, Stern, and Gans have developed a systematic approach for startup leadership. They detail four key choices entrepreneurs must make, and “four strategic approaches to find and frame opportunities.”
“Failure by Design: The California Energy Crisis and the Limits of Market Planning” (University of Chicago, 2024)
By Georg Rilinger, the Fred Kayne Career Development Assistant Professor of Entrepreneurship and assistant professor of technological innovation, entrepreneurship, and strategic management
The California electricity crisis in 2000 caused billions in losses and led to bankruptcy for one of the state’s largest utilities. More than 20 years later, the question remains: Why did the newly created electricity markets fail? In “Failure by Design,” Rilinger explores practical obstacles to market design to offer a new explanation for the crisis — one that moves beyond previous interpretations that have primarily blamed incompetent politicians or corrupt energy sellers.
Culture, humanities, and social sciences
“Chasing the Pearl-Manuscript: Speculation, Shapes, Delight” (University of Chicago Press, 2025)
By Arthur Bahr, professor of literature
In this book, Bahr explores the four poems and 12 illustrations of the “Pearl-Manuscript,” the only surviving medieval copy of two of the best-known Middle English poems: “Pearl” and “Sir Gawain and the Green Knight.” He explores how the physical manuscript enhances our perception of the poetry, drawing on recent technological advances that show it to be a more complex piece of material, visual, and textual art than previously understood. By connecting the manuscript’s construction to the text’s intricate language, Bahr suggests new ways to understand the power of poetry.
“Taxation and Resentment: Race, Party, and Class in American Tax Attitudes” (Princeton University Press, 2025)
By Andrea Campbell, the Arthur and Ruth Sloan Professor of Political Science
Most Americans want the rich to pay more to fund government, yet favor regressive over progressive taxes. Why this policy-preference gap? In this book, Campbell describes how convoluted tax code confuses the public about who pays and who benefits, so tax preferences do not turn on principles, interests, or even party. Instead, race and racism play large roles, and tax skepticism among Americans of all stripes helps the rich and anti-tax forces undermine progressivity.
“Uprooted: How post-WWII Population Transfers Remade Europe” (Cambridge University Press, 2024)
By Volha Charnysh, the Ford Career Development Associate Professor of Political Science
Each year, millions of people are uprooted from their homes by wars, repression, natural disasters, and climate change. In “Uprooted,” Charnysh presents a fresh perspective on the consequences of mass displacement, arguing that accommodating the displaced population can strengthen receiving states and benefit local economies. With rich insights and compelling evidence, the book challenges common assumptions about the costs of forced displacement and cultural diversity and proposes a novel mechanism linking wars to state-building.
“Crime, Insecurity, and Community Policing: Experiments on Building Trust” (Cambridge University Press, 2024)
By Fotini Christia, the Ford International Professor of the Social Sciences; Graeme Blair; and Jeremy M. Weinstein
How can societies reduce crime without exacerbating adversarial relationships between the police and citizens? Through field experiments in a variety of political contexts, this book presents the outcome of a major research initiative into the efficacy of community policing. Scholars uncover whether, and under what conditions, this influential strategy for tackling crime and insecurity is effective. With its highly innovative approach to cumulative learning, this writing represents a new frontier in the study of police reform.
“Letterlocking: The Hidden History of the Letter” (MIT Press, 2025)
By Jana Dambrogio, the Thomas F. Peterson Conservator at MIT Libraries, and Daniel Starza Smith
Before the invention of the gummed envelope in the 1830s, how did people secure their private letters? The answer is letterlocking — the ingenious process of securing a letter using a combination of folds, tucks, slits, or adhesives such as sealing wax, so that it becomes its own envelope. In this book, Dambrogio and Starza Smith, experts who have pioneered the field over the last 10 years, tell the fascinating story of letterlocking within epistolary history, drawing on real historical examples from all over the world.
“Long-Term Care around the World” (University of Chicago Press, 2025)
Edited by Jonathan Gruber, the Ford Professor of Economics and head of the Department of Economics, and Kathleen McGarry
As formal long-term care becomes unaffordable for seniors in many countries, public systems and unpaid caregivers increasingly bear the burden of supporting the world’s aging population. “Long-Term Care around the World” is a comparative analysis of long-term care in 10 wealthy countries that considers the social costs of both formal and informal care —which is critical, given that informal unpaid care is estimated to account for one-third of all long-term care spending.
“Empty Vessel: The Global Economy in One Barge” (Penguin Random House, 2025)
By Ian Kumekawa, lecturer of history
What do a barracks for British troops in the Falklands War, a floating jail off the Bronx, and temporary housing for VW factory workers in Germany have in common? The Balder Scapa: a single barge that served all three roles. Through this one vessel, Kumekawa illustrates many currents: globalization, the transience of economic activity, and the hazy world of transactions many call “the offshore,” the lightly regulated sphere of economic activity that encourages short-term actions.
“The Price of Our Values: The Economic Limits of Moral Life” (University of Chicago Press, 2025)
By David Thesmar, the Franco Modigliani Professor of Financial Economics and professor of finance, and Augustin Landier
Two economists examine the interplay between our desire to be good, the personal costs of being good, and the point at which people abandon goodness due to its costs. Aided by the results of two surveys, they find that the answers to modern moral dilemmas are economic, and often highly predictable. Our values may guide us, but we are also forced to consider economic costs to settle decisions.
“Spheres of Injustice: The Ethical Promise of Minority Presence” (MIT Press, 2025)
By Bruno Perreau, the Cynthia L. Reed Professor of French Studies
How can the rights of minorities be protected in democracies? The question has been front and center in the U.S. since the Supreme Court’s repeal of affirmative action. In Europe too, minority politics are being challenged. The very notion of “minority” is being questioned, while the notion of a “protected class” risks encouraging competition among minorities. In “Spheres of Injustice,” Perreau demonstrates how we can make the fight against discrimination beneficial for all.
“Attention, Shoppers! American Retail Capitalism and the Origins of the Amazon Economy” (Princeton University Press, 2025)
By Kathleen Thelen, the Ford Professor of Political Science
This book traces the evolution of U.S. retailing from the late 19th century to today, uncovering the roots of a bitter equilibrium where large low-cost retailers dominate and vast numbers of low-income families now rely on them to make ends meet. Thelen reveals how large discount retailers have successfully exploited a uniquely permissive regulatory landscape to create a shopper’s paradise built on cheap labor.
“Routledge Handbook of Space Policy” (Routledge, 2024)
Chapter by Danielle R. Wood, associate professor in the program in media arts and sciences and associate professor in aeronautics and astronautics
In her chapter, “The Expanding Sphere of Human Responsibility for Sustainability on Earth and in Space,” Wood proposes a multifaceted definition of sustainability and explores how the definition can be exercised as humans expand activity in space. Building on the tradition of consensus building on concepts of sustainable development through United Nations initiatives, Wood asserts that sustainability for human activity in space requires consideration of three types of responsibility: economic, social, and environmental.
“Victorian Parlour Games: A Modern Host’s Guide to Classic Fun for Everyone” (Chronicle Books, 2024)
By Ned Wolfe, marketing and communications assistant at MIT Libraries
“Victorian Parlour Games” is a beautifully designed and compact hardcover volume full of the classic, often silly, games played in the late 19th century. The Victorians loved fun and played hundreds and hundreds of party games. This endlessly delightful party games book collects some of the very best for your reference and pleasure.
Arts, architecture, planning, and design
“Against Reason: Tony Smith, Sculpture, and Other Modernisms” (MIT Press, 2024)
Chapter by Judith Barry, professor in the Art, Culture, and Technology Program, with Kelli Anderson
This collection of essays reveals the depth and complexity of the sculpture of American modernist Tony Smith, placing his multifaceted practice in dialogue with contemporary voices. Barry’s chapter, "New Piece: Elective Geometries," describes the transformation of Smith’s sculpture into the form of a flipbook and centerpiece “pop-up.”
“Steina” (MIT Press, 2025)
Edited by Natalie Bell, curator at the MIT List Visual Arts Center
Accompanying the related exhibition at MIT List Visual Arts Center and Buffalo AKG Art Museum, “Steina” brings renewed recognition to Steina (b. 1940, Iceland), tracing her oeuvre from early collaborative works with her partner Woody Vasulka to her independent explorations of optics and a liberated, non-anthropocentric subjectivity.
“Jewish Theatrical Resources: A Guide for Theaters Producing Jewish Work” (Alliance for Jewish Theater, 2025)
Chapter by Marissa Friedman, marketing and communications manager in the Art, Culture, and Technology Program; Jenna Clark Embry; Robin Goldberg; Gabrielle Hoyt; Stephanie Kane; Alix Rosenfeld; and Marissa Shadburn
Produced by the Alliance for Jewish Theatre, this guide was created to help non-Jewish theaters produce Jewish plays with authenticity, cultural awareness, and care. Friedman contributes a chapter on dramaturgy, exploring how the primary role of a dramaturg is to support a playwright and production team in articulating their artistic vision, and setting forth an ideal model for the dramaturgy of a Jewish play, with both a theatrical dramaturg and a Jewish dramaturg.
“Play It Again, Sam: Repetition in the Arts” (MIT Press, 2025)
By Samuel Jay Keyser, the Peter de Florez emeritus professor of linguistics
Leonard Bernstein, in his famous Norton Lectures, extolled repetition, saying that it gave poetry its musical qualities and that music theorists’ refusal to take it seriously did so at their peril. “Play It Again, Sam” takes Bernstein seriously. In this book, Keyser explores why we enjoy works of poetry, music, and painting, and how repetition plays a central part in the pleasure.
“The Moving Image: A User’s Manual” (MIT Press, 2025)
By Peter B. Kaufman, associate director of development at MIT Open Learning
Video is today’s most popular information medium. Two-thirds of the world’s internet traffic is video. Americans get their news and information more often from screens and speakers than through any other means. “The Moving Image” is the first authoritative account of how we have arrived here, together with the first definitive manual to help writers, educators, and publishers use video more effectively.
“Beyond Ruins: Reimagining Modernism” (ArchiTangle, 2024)
Edited by Raafat Majzoub SM ’17, visiting lecturer at the Art, Culture, and Technology Program; and Nicolas Fayad
This book explores the renovation of modern architecture in the Global South as a tool for self-determination and community-building. Focusing on the Oscar Niemeyer Guest House in Tripoli, Lebanon, Majzoub and Fayad examine heritage as a political and material process. Through case studies, visual essays, and conversations with architects, artists, and theorists, the book addresses challenges of preservation, gaps in archiving, and the need for new forms of architectural practice.
“The Equitably Resilient City: Solidarities and Struggles in the Face of Climate Crisis” (MIT Press, 2024)
By Lawrence J. Vale, the Ford Professor of Urban Design and Planning and associate dean of the MIT School of Architecture and Planning; and Zachary B. Lamb
Too often the places most vulnerable to climate change are those that are home to people with the fewest economic and political resources. And while some leaders are starting to take action to reduce climate risks, many early adaptation schemes have actually made preexisting inequalities worse. In this book, Vale and Lamb ask how cities can adapt to climate change and other threats while also doing right by disadvantaged residents.
Novel and biography
“The Novice of Thanatos: An Epic Dark Fantasy of Horror, Death, and Necromancy” (Satirrell Publishing, 2025)
By Scott Austin Tirrell, director of administration and finance at the Art, Culture, and Technology Program
A fantasy novel that follows 11-year-old Mishal, a gifted yet troubled boy inducted into the secretive Order of Thanatos. Set in the grim and mystic realm of Lucardia, the story is framed as a first-person memoir chronicling Mishal’s initiation as a novice psychopomp — one who guides the dead across the Threshold into the afterlife. As Mishal navigates the Order’s rigid hierarchy, academic rigor, and spiritual mysteries, he begins to uncover unsettling truths about death, the soul, and the hidden agendas of those in power. Haunted by a spirit he cannot abandon and burdened by a forbidden artifact, Mishal must decide whom to trust and what to believe as his abilities grow — and as the line between duty and damnation begins to blur.
For young readers
“I Love You Bigger Than Everything That’s Big” (Stillwater River Publications, 2024)
By Lindsay Bartholomew, exhibit content and experience developer at MIT Museum, and illustrated by Sequoia Bostick
How much can you love someone? Higher than you can reach? Longer than a river? Bigger than the sky? The real answer — bigger than everything that’s big!
“A Century for Caroline” (Denene Millner Books / Simon and Schuster, 2025)
By Kaija Langley, director of development at MIT Libraries, and illustrated by TeMika Grooms
A great-grandma imparts the wisdom gained over her 100 years to an eager little girl in this tender picture book tribute to family and living a long, purposeful, beautiful life.
“All the Rocks We Love” (Penguin Random House, 2024)
By Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences, and Lisa Varchol Perron, and illustrated by David Scheirer
It’s no secret that children love rocks: They appear in jacket pockets, on windowsills, in the car, in their hiding places, and most often, in little grips. This book is an appreciation of rocks’ versatility and appeal, paired with the presentation of real types of rocks and their play-worthy attributes.
Evelyn Wang: A new energy source at MIT
Evelyn Wang ’00 knows a few things about engineering solutions to hard problems. After all, she invented a way to pull water out of thin air.
Now, Wang is applying that problem-solving experience — and an enduring sense of optimism — toward the critical issue of climate change, to strengthen the American energy economy and ensure resilience for all.
Wang, a mechanical engineering professor by trade, began work this spring as MIT’s first vice president for energy and climate, overseeing the Institute’s expanding work on climate change. That means broadening the Institute’s already-wide research portfolio, scaling up existing innovations, seeking new breakthroughs, and channeling campus community input to drive work forward.
“MIT has the potential to do so much, when we know that climate, energy, and resilience are paramount to events happening around us every day,” says Wang, who is also the Ford Professor of Engineering at MIT. “There’s no better place than MIT to come up with the transformational solutions that can help shape our world.”
That also means developing partnerships with corporate allies, startups, government, communities, and other organizations. Tackling climate change, Wang says, “requires a lot of partnerships. It’s not an MIT-only endeavor. We’re going to have to collaborate with other institutions and think about where industry can help us deploy and scale so the impact can be greater.”
She adds: “The more partnerships we have, the more understanding we have of the best pathways to make progress in difficult areas.”
From MIT to ARPA-E
An MIT faculty member since 2007, Wang leads the Device Research Lab. Along with collaborators, she identifies new materials and optimizations based on heat and mass transport processes that unlock the creation of leading-edge innovations. Her development of the device that extracts water from even very dry air led Foreign Policy Magazine to name her its 2017 Global ReThinker, and she won the 2018 Eighth Prince Sultan bin Abdulaziz International Prize for Water.
Her research also extends to other areas such as energy and desalination research. In 2016, Wang and several colleagues announced a device based on nanophotonic crystals with the potential to double the amount of power produced by a given area of solar panels, which led to one of her graduate researchers on the project to co-found the startup Antora Energy. More recently, Wang and colleagues developed an aerogel that improves window insulation, now being commercialized through her former graduate students in a startup, AeroShield.
Wang also spent two years recently as director of the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), which supports early-stage R&D on energy generation, storage, and use. Returning to MIT, she began her work as vice president for energy and climate in April, engaging with researchers, holding community workshops, and planning to build partnerships.
“I’ve been energized coming back to the Institute, given the talented students, the faculty, the staff. It’s invigorating to be back in this community,” Wang says. “People are passionate, excited, and mission-driven, and that’s the energy we need to make a big impact in the world.”
Wang is also working to help align the Institute’s many existing climate efforts. This includes the Climate Project at MIT, an Institute-wide presidential initiative announced in 2024, which aims to accelerate and scale up climate solutions while generating new tools and policy proposals. All told, about 300 MIT faculty conduct research related to climate issues in one form or another.
“The fact that there are so many faculty working on climate is astounding,” Wang says. “Everyone’s doing exciting work, but how can we leverage our unique strengths to create something bigger than the sum of its parts? That’s what I’m working toward. We’ve spun out so many technologies. How do we do more of that? How do we do that faster, and in a way so the world will feel the impact?”
A deep connection to campus — and strong sense of optimism
Understanding MIT is one of Wang’s strengths, given that she has spent over two decades at the Institute.
Wang earned her undergraduate degree from MIT in mechanical engineering, and her MS and PhD in mechanical engineering from Stanford University. She has held several chaired faculty positions at MIT. In 2008, Wang was named the Esther and Harold E. Edgerton Assistant Professor; in 2015, she was named the Gail E. Kendall Professor; and in 2021, she became the Ford Professor of Engineering. Wang served as head of the Department of Mechanical Engineering from 2018 through 2022.
As it happens, Wang’s parents, Kang and Edith, met as graduate students at the Institute. Her father, an electrical engineer, became a professor at the University of California at Los Angeles. Wang also met her husband at MIT, and both of her brothers graduated from the Institute.
Along with her deep institutional knowledge, administrative experience, and track record as an innovator, Wang is bringing several other things to her new role as vice president for climate: a sense of urgency about the issue, coupled with a continual sense of optimism that innovators can meet society’s needs.
“I think optimism can make a difference, and is great to have in the midst of collective challenge,” Wang says. “We’re such a mission-driven university, and people come here to solve real-world problems.”
That hopeful approach is why Wang describes the work as not only as a challenge but also a generational opportunity. “We have the chance to design the world we want,” she says, “one that’s cleaner, more sustainable and more resilient. This future is ours to shape and build together.”
Wang thinks MIT contains many examples of world-shaping progress, She cites MIT’s announcement this month of the creation of the Schmidt Laboratory for Materials in Nuclear Technologies, at the MIT Plasma Science and Fusion center, to conduct research on next-generation materials that could help enable the construction of fusion power plants. Another example Wang references is MIT research earlier this year on developing clean ammonia, a way to make the world’s most widely-produced chemical with drastically-reduced greenhouse gas emissions.
“Those solutions could be breakthroughs,” Wang says. “Those are the kinds of things that give us optimism. There’s still a lot of research to be done, but it suggests the potential of what our world can be.”
Optimism: There’s that word again.
“Optimism is the only way to go,” Wang says. “Yes, the world is challenged. But this is where MIT’s strengths — in research, innovation, and education — can bring optimism to the table.”
Merging AI and underwater photography to reveal hidden ocean worlds
In the Northeastern United States, the Gulf of Maine represents one of the most biologically diverse marine ecosystems on the planet — home to whales, sharks, jellyfish, herring, plankton, and hundreds of other species. But even as this ecosystem supports rich biodiversity, it is undergoing rapid environmental change. The Gulf of Maine is warming faster than 99 percent of the world’s oceans, with consequences that are still unfolding.
A new research initiative developing at MIT Sea Grant, called LOBSTgER — short for Learning Oceanic Bioecological Systems Through Generative Representations — brings together artificial intelligence and underwater photography to document the ocean life left vulnerable to these changes and share them with the public in new visual ways. Co-led by underwater photographer and visiting artist at MIT Sea Grant Keith Ellenbogen and MIT mechanical engineering PhD student Andreas Mentzelopoulos, the project explores how generative AI can expand scientific storytelling by building on field-based photographic data.
Just as the 19th-century camera transformed our ability to document and reveal the natural world — capturing life with unprecedented detail and bringing distant or hidden environments into view — generative AI marks a new frontier in visual storytelling. Like early photography, AI opens a creative and conceptual space, challenging how we define authenticity and how we communicate scientific and artistic perspectives.
In the LOBSTgER project, generative models are trained exclusively on a curated library of Ellenbogen’s original underwater photographs — each image crafted with artistic intent, technical precision, accurate species identification, and clear geographic context. By building a high-quality dataset grounded in real-world observations, the project ensures that the resulting imagery maintains both visual integrity and ecological relevance. In addition, LOBSTgER’s models are built using custom code developed by Mentzelopoulos to protect the process and outputs from any potential biases from external data or models. LOBSTgER’s generative AI builds upon real photography, expanding the researchers’ visual vocabulary to deepen the public’s connection to the natural world.
At its heart, LOBSTgER operates at the intersection of art, science, and technology. The project draws from the visual language of photography, the observational rigor of marine science, and the computational power of generative AI. By uniting these disciplines, the team is not only developing new ways to visualize ocean life — they are also reimagining how environmental stories can be told. This integrative approach makes LOBSTgER both a research tool and a creative experiment — one that reflects MIT’s long-standing tradition of interdisciplinary innovation.
Underwater photography in New England’s coastal waters is notoriously difficult. Limited visibility, swirling sediment, bubbles, and the unpredictable movement of marine life all pose constant challenges. For the past several years, Ellenbogen has navigated these challenges and is building a comprehensive record of the region’s biodiversity through the project, Space to Sea: Visualizing New England’s Ocean Wilderness. This large dataset of underwater images provides the foundation for training LOBSTgER’s generative AI models. The images span diverse angles, lighting conditions, and animal behaviors, resulting in a visual archive that is both artistically striking and biologically accurate.
LOBSTgER’s custom diffusion models are trained to replicate not only the biodiversity Ellenbogen documents, but also the artistic style he uses to capture it. By learning from thousands of real underwater images, the models internalize fine-grained details such as natural lighting gradients, species-specific coloration, and even the atmospheric texture created by suspended particles and refracted sunlight. The result is imagery that not only appears visually accurate, but also feels immersive and moving.
The models can both generate new, synthetic, but scientifically accurate images unconditionally (i.e., requiring no user input/guidance), and enhance real photographs conditionally (i.e., image-to-image generation). By integrating AI into the photographic workflow, Ellenbogen will be able to use these tools to recover detail in turbid water, adjust lighting to emphasize key subjects, or even simulate scenes that would be nearly impossible to capture in the field. The team also believes this approach may benefit other underwater photographers and image editors facing similar challenges. This hybrid method is designed to accelerate the curation process and enable storytellers to construct a more complete and coherent visual narrative of life beneath the surface.
In one key series, Ellenbogen captured high-resolution images of lion’s mane jellyfish, blue sharks, American lobsters, and ocean sunfish (Mola mola) while free diving in coastal waters. “Getting a high-quality dataset is not easy,” Ellenbogen says. “It requires multiple dives, missed opportunities, and unpredictable conditions. But these challenges are part of what makes underwater documentation both difficult and rewarding.”
Mentzelopoulos has developed original code to train a family of latent diffusion models for LOBSTgER grounded on Ellenbogen’s images. Developing such models requires a high level of technical expertise, and training models from scratch is a complex process demanding hundreds of hours of computation and meticulous hyperparameter tuning.
The project reflects a parallel process: field documentation through photography and model development through iterative training. Ellenbogen works in the field, capturing rare and fleeting encounters with marine animals; Mentzelopoulos works in the lab, translating those moments into machine-learning contexts that can extend and reinterpret the visual language of the ocean.
“The goal isn’t to replace photography,” Mentzelopoulos says. “It’s to build on and complement it — making the invisible visible, and helping people see environmental complexity in a way that resonates both emotionally and intellectually. Our models aim to capture not just biological realism, but the emotional charge that can drive real-world engagement and action.”
LOBSTgER points to a hybrid future that merges direct observation with technological interpretation. The team’s long-term goal is to develop a comprehensive model that can visualize a wide range of species found in the Gulf of Maine and, eventually, apply similar methods to marine ecosystems around the world.
The researchers suggest that photography and generative AI form a continuum, rather than a conflict. Photography captures what is — the texture, light, and animal behavior during actual encounters — while AI extends that vision beyond what is seen, toward what could be understood, inferred, or imagined based on scientific data and artistic vision. Together, they offer a powerful framework for communicating science through image-making.
In a region where ecosystems are changing rapidly, the act of visualizing becomes more than just documentation. It becomes a tool for awareness, engagement, and, ultimately, conservation. LOBSTgER is still in its infancy, and the team looks forward to sharing more discoveries, images, and insights as the project evolves.
Answer from the lead image: The left image was generated using using LOBSTgER’s unconditional models and the right image is real.
For more information, contact Keith Ellenbogen and Andreas Mentzelopoulos.
Accelerating hardware development to improve national security and innovation
Modern fighter jets contain hundreds or even thousands of sensors. Some of those sensors collect data every second, others every nanosecond. For the engineering teams building and testing those jets, all those data points are hugely valuable — if they can make sense of them.
Nominal is an advanced software platform made for engineers building complex systems ranging from fighter jets to nuclear reactors, satellites, rockets, and robots. Nominal’s flagship product, Nominal Core, helps teams organize, visualize, and securely share data from tests and operations. The company’s other product, Nominal Connect, helps engineers build custom applications for automating and syncing their hardware systems.
“It’s a very technically challenging problem to take the types of data that our customers are generating and get them into a single place where people can collaborate and get insights,” says Nominal co-founder Jason Hoch ’13. “It’s hard because you’re dealing with a lot of different data sources, and you want to be able to correlate those sources and apply mathematical formulas. We do that automatically.”
Hoch started Nominal with Cameron McCord ’13, SM ’14 and Bryce Strauss after the founders had to work with generic data tools or build their own solutions at places like Lockheed Martin and Anduril. Today, Nominal is working with organizations in aerospace, defense, robotics, manufacturing, and energy to accelerate the development of products critical for applications in U.S. national security and beyond.
“We built Nominal to take the best innovations in software and data technology and tailor them to the workflows that engineers go through when building and testing hardware systems,” McCord says. “We want to be the data and software backbone across all of these types of organizations.”
Accelerating hardware development
Hoch and McCord met during their first week at MIT and joined the same fraternity as undergraduates. Hoch double majored in mathematics and computer science and engineering, and McCord participated in the Navy Reserve Officers’ Training Corps (NROTC) while majoring in physics and nuclear science and engineering.
“MIT let me flex my technical skills, but I was also interested in the broader implications of technology and national security,” McCord says. “It was an interesting balance where I was learning the hardcore engineering skills, but always having a wider aperture to understand how the technology I was learning about was going to impact the world.”
Following MIT, McCord spent eight years in the Navy before working at the defense technology company Anduril, where he was charged with building the software systems to test different products. Hoch also worked at the intelligence and defense-oriented software company Palantir.
McCord met Strauss, who had worked as an engineer at Lockheed Martin, while the two were at Harvard Business School. The eventual co-founders realized they had each struggled with software during complex hardware development projects, and set out to build the tools they wished they’d had.
At the heart of Nominal’s platform is a unified database that can connect and organize hundreds of data sources in real-time. Nominal’s system allows engineers to search through or visualize that information, helping them spot trends, catch critical events, and investigate anomalies — what Nominal’s team describes as learning the rules governing complex systems.
“We’re trying to get answers to engineers so they understand what’s happening and can keep projects moving forward,” says Strauss. “Testing and validating these systems are fundamental bottlenecks for hardware progress. Our platform helps engineers answer questions like, ‘When we made a 30-degree turn at 16,000 feet, what happened to the engine’s temperature, and how does that compare to what happened yesterday?’”
By automating tasks like data stitching and visualization, Nominal’s platform helps accelerate post-test analysis and development processes for complex systems. And because the platform is cloud-hosted, engineers can easily share visualizations and other dynamic assets with members of their team as opposed to making static reports, allowing more people in an organization to interact directly with the data.
From satellites to drones, robots to rockets
Nominal recently announced a $75 million Series B funding round, led by Sequoia Capital, to accelerate their growth.
“We’ll use the funds to accelerate product roadmaps for our existing products, launch new products across the hardware test stack, and more than double our team,” says McCord.
Today, aerospace customers are using Nominal’s platform to monitor their assets in orbit. Manufacturers are using Nominal to make sure their components work as expected before they’re integrated into larger systems. Nuclear fusion companies are using Nominal to understand when their parts might fail due to heat.
“The products we’ve built are transferrable,” Hoch says. “It doesn’t matter if you’re building a nuclear fusion reactor or a satellite, those teams can benefit from the Nominal tool chain.”
Ultimately the founders believe the platform helps create better products by enabling a data-driven, iterative design process more commonly seen in the software development industry.
“The concept of continuous integration and development in software revolutionized the industry 20 years ago. Before that, it was common to build software in large, slow batches – developing for months, then testing and releasing all at once,” Strauss explains. “We’re bringing continuous testing to hardware. It’s about constantly creating that feedback loop to improve performance. It’s a new paradigm for how hardware is built. We’ve seen companies like SpaceX do this well to move faster and outpace the competition. Now, that approach is available to everyone.”
From MIT, an instruction manual for turning research into startups
Since MIT opened the first-of-its-kind venture studio within a university in 2019, it has demonstrated how a systemic process can help turn research into impactful ventures.
Now, MIT Proto Ventures is launching the “R&D Venture Studio Playbook,” a resource to help universities, national labs, and corporate R&D offices establish their own in-house venture studios. The online publication offers a comprehensive framework for building ventures from the ground up within research environments.
“There is a huge opportunity cost to letting great research sit idle,” says Fiona Murray, associate dean for innovation at the MIT Sloan School of Management and a faculty director for Proto Ventures. “The venture studio model makes research systematic, rather than messy and happenstance.”
Bigger than MIT
The new playbook arrives amid growing national interest in revitalizing the United States’ innovation pipeline — a challenge underscored by the fact that just a fraction of academic patents ever reach commercialization.
“Venture-building across R&D organizations, and especially within academia, has been based on serendipity,” says MIT Professor Dennis Whyte, a faculty director for Proto Ventures who helped develop the playbook. “The goal of R&D venture studios is to take away the aspect of chance — to turn venture-building into a systemic process. And this is something not just MIT needs; all research universities and institutions need it.”
Indeed, MIT Proto Ventures is actively sharing the playbook with peer institutions, federal agencies, and corporate R&D leaders seeking to increase the translational return on their research investments.
“We’ve been following MIT’s Proto Ventures model with the vision of delivering new ventures that possess both strong tech push and strong market pull,” says Mark Arnold, associate vice president of Discovery to Impact and managing director of Texas startups at The University of Texas at Austin. “By focusing on market problems first and creating ventures with a supportive ecosystem around them, universities can accelerate the transition of ideas from the lab into real-world solutions.”
What’s in the playbook
The playbook outlines the venture studio model process followed by MIT Proto Ventures. MIT’s venture studio embeds full-time entrepreneurial scientists — called venture builders — inside research labs. These builders work shoulder-to-shoulder with faculty and graduate students to scout promising technologies, validate market opportunities, and co-create new ventures.
“We see this as an open-source framework for impact,” says MIT Proto Ventures Managing Director Gene Keselman. “Our goal is not just to build startups out of MIT — it’s to inspire innovation wherever breakthrough science is happening.”
The playbook was developed by the MIT Proto Ventures team — including Keselman, venture builders David Cohen-Tanugi and Andrew Inglis, and faculty leaders Murray, Whyte, Andrew Lo, Michael Cima, and Michael Short.
“This problem is universal, so we knew if it worked there’d be an opportunity to write the book on how to build a translational engine,” Keselman said. “We’ve had enough success now to be able to say, ‘Yes, this works, and here are the key components.’”
In addition to detailing core processes, the playbook includes case studies, sample templates, and guidance for institutions seeking to tailor the model to fit their unique advantages. It emphasizes that building successful ventures from R&D requires more than mentorship and IP licensing — it demands deliberate, sustained focus, and a new kind of translational infrastructure.
How it works
A key part of MIT’s venture studio is structuring efforts into distinct tracks or problem areas — MIT Proto Ventures calls these channels. Venture builders work in a single track that aligns with their expertise and interest. For example, Cohen-Tanugi is embedded in the MIT Plasma Science and Fusion Center, working in the Fusion and Clean Energy channel. His first two venture successes have been a venture using superconducting magnets for in-space propulsion and a deep-tech startup improving power efficiency in data centers.
“This playbook is both a call to action and a blueprint,” says Cohen-Tanugi, lead author of the playbook. “We’ve learned that world-changing inventions often remain on the lab bench not because they lack potential, but because no one is explicitly responsible for turning them into businesses. The R&D venture studio model fixes that.”
Four from MIT named 2025 Goldwater Scholars
Four MIT rising seniors have been selected to receive a 2025 Barry Goldwater Scholarship, including Avani Ahuja and Jacqueline Prawira in the School of Engineering and Julianna Lian and Alex Tang from the School of Science. An estimated 5,000 college sophomores and juniors from across the United States were nominated for the scholarships, of whom only 441 were selected.
The Goldwater Scholarships have been conferred since 1989 by the Barry Goldwater Scholarship and Excellence in Education Foundation. These scholarships have supported undergraduates who go on to become leading scientists, engineers, and mathematicians in their respective fields.
Avani Ahuja, a mechanical engineering and electrical engineering major, conducts research in the Conformable Decoders group, where she is focused on developing a “wearable conformable breast ultrasound patch” that makes ultrasounds for breast cancer more accessible.
“Doing research in the Media Lab has had a huge impact on me, especially in the ways that we think about inclusivity in research,” Ahuja says.
In her research group, Ahuja works under Canan Dagdeviren, the LG Career Development Professor of Media Arts and Sciences. Ahuja plans to pursue a PhD in electrical engineering. She aspires to conduct research in electromechanical systems for women’s health applications and teach at the university level.
“I want to thank Professor Dagdeviren for all her support. It’s an honor to receive this scholarship, and it’s amazing to see that women’s health research is getting recognized in this way,” Ahuja says.
Julianna Lian studies mechanochemistry, organic, and polymer chemistry in the lab of Professor Jeremiah Johnson, the A. Thomas Guertin Professor of Chemistry. In addition to her studies, she serves the MIT community as an emergency medical technician (EMT) with MIT Emergency Medical Services, is a member of MIT THINK, and a ClubChem mentorship chair.
“Receiving this award has been a tremendous opportunity to not only reflect on how much I have learned, but also on the many, many people I have had the chance to learn from,” says Lian. “I am deeply grateful for the guidance, support, and encouragement of these teachers, mentors, and friends. And I am excited to carry forward the lasting curiosity and excitement for chemistry that they have helped inspire in me.”
Lian’s career goals post-graduation include pursuing a PhD in organic chemistry, to conduct research at the interface of synthetic chemistry and materials science, aided by computation, and to teach at the university level.
Jacqueline Prawira, a materials science and engineering major, joined the Center of Decarbonization and Electrification of Industry as a first-year Undergraduate Research Opportunities Program student and became a co-inventor on a patent and a research technician at spinout company Rock Zero. She has also worked in collaboration with Indigenous farmers and Diné College students on the Navajo Nation.
“I’ve become significantly more cognizant of how I listen to people and stories, the tangled messiness of real-world challenges, and the critical skills needed to tackle complex sustainability issues,” Prawira says.
Prawira is mentored by Yet-Ming Chiang, professor of materials science and engineering. Her career goals are to pursue a PhD in materials science and engineering and to research sustainable materials and processes to solve environmental challenges and build a sustainable society.
“Receiving the prestigious title of 2025 Goldwater Scholar validates my current trajectory in innovating sustainable materials and demonstrates my growth as a researcher,” Prawira says. “This award signifies my future impact in building a society where sustainability is the norm, instead of just another option.”
Alex Tang studies the effects of immunotherapy and targeted molecular therapy on the tumor microenvironment in metastatic colorectal cancer patients. He is supervised by professors Jonathan Chen at Northwestern University and Nir Hacohen at the Broad Institute of MIT and Harvard.
“My mentors and collaborators have been instrumental to my growth since I joined the lab as a freshman. I am incredibly grateful for the generous mentorship and support of Professor Hacohen and Professor Chen, who have taught me how to approach scientific investigation with curiosity and rigor,” says Tang. “I’d also like to thank my advisor Professor Adam Martin and first-year advisor Professor Angela Belcher for their guidance throughout my undergraduate career thus far. I am excited to carry forward this work as I progress in my career.” Tang intends to pursue physician-scientist training following graduation.
The Scholarship Program honoring Senator Barry Goldwater was designed to identify, encourage, and financially support outstanding undergraduates interested in pursuing research careers in the sciences, engineering, and mathematics. The Goldwater Scholarship is the preeminent undergraduate award of its type in these fields.
The tenured engineers of 2025
In 2025, MIT granted tenure to 11 faculty members across the School of Engineering. This year’s tenured engineers hold appointments in the departments of Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Electrical Engineering and Computer Science (EECS) — which reports jointly to the School of Engineering and MIT Schwarzman College of Computing — Materials Science and Engineering, Mechanical Engineering, and Nuclear Science and Engineering.
“It is with great pride that I congratulate the 11 newest tenured faculty members in the School of Engineering. Their dedication to advancing their fields, mentoring future innovators, and contributing to a vibrant academic community is truly inspiring,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and the Vannevar Bush Professor of Electrical Engineering and Computer Science who will assume the title of MIT provost July 1. “This milestone is not only a testament to their achievements, but a promise of even greater impact ahead.”
This year’s newly tenured engineering faculty include:
Bryan Bryson, the Phillip and Susan Ragon Career Development Professor in the Department of Biological Engineering, conducts research in infectious diseases and immunoengineering. He is interested in developing new tools to dissect the complex dynamics of bacterial infection at a variety of scales ranging from single cells to infected animals, sitting in both “reference frames” by taking both an immunologist’s and a microbiologist’s perspective.
Connor Coley is the Class of 1957 Career Development Professor and associate professor of chemical engineering, with a shared appointment in EECS. His research group develops new computational methods at the intersection of artificial intelligence and chemistry with relevance to small molecule drug discovery, chemical synthesis, and structure elucidation.
Mohsen Ghaffari is the Steven and Renee Finn Career Development Professor and an associate professor in the EECS. His research explores the theory of distributed and parallel computation. He has done influential work on a range of algorithmic problems, including generic derandomization methods for distributed computing and parallel computing, improved distributed algorithms for graph problems, sublinear algorithms derived via distributed techniques, and algorithmic and impossibility results for massively parallel computation.
Rafael Gomez-Bombarelli, the Paul M. Cook Development Professor and associate professor of materials science and engineering, works at the interface between machine learning and atomistic simulations. He uses computational tools to tackle design of materials in complex combinatorial search spaces, such as organic electronic materials, energy storage polymers and molecules, and heterogeneous (electro)catalysts.
Song Han, an associate professor in EECS, is a pioneer in model compression and TinyML. He has innovated in key areas of pruning quantization, parallelization, KV cache optimization, long-context learning, and multi-modal representation learning to minimize generative AI costs, and he designed the first hardware accelerator (EIE) to exploit weight sparsity.
Kaiming He, the Douglass Ross (1954) Career Development Professor of Software Technology and an associate professor in EECS, is best known for his work on deep residual networks (ResNets). His research focuses on building computer models that can learn representations and develop intelligence from and for the complex world, with the long-term goal of augmenting human intelligence with more capable artificial intelligence.
Phillip Isola, the Class of 1948 Career Development Professor and associate professor in EECS, studies computer vision, machine learning, and AI. His research aims to uncover fundamental principles of intelligence, with a particular focus on how models and representations of the world can be acquired through self-supervised learning, from raw sensory experience alone, and without the use of labeled data.
Mingda Li is the Class of 1947 Career Development Professor and an associate professor in the Department of Nuclear Science and Engineering. His research lies in characterization and computation.
Richard Linares is an associate professor in the Department of Aeronautics and Astronautics. His research focuses on astrodynamics, space systems, and satellite autonomy. Linares develops advanced computational tools and analytical methods to address challenges associated with space traffic management, space debris mitigation, and space weather modeling.
Jonathan Ragan-Kelley, an associate professor in EECS, has designed everything from tools for visual effects in movies to the Halide programming language that’s widely used in industry for photo editing and processing. His research focuses on high-performance computer graphics and accelerated computing, at the intersection of graphics with programming languages, systems, and architecture.
Arvind Satyanarayan is an associate professor in EECS. His research areas cover data visualization, human-computer interaction, and artificial intelligence and machine learning. He leads the MIT Visualization Group, which uses interactive data visualization as a petri dish to study intelligence augmentation — how computation can help amplify human cognition and creativity while respecting our agency.
MIx helps innovators tackle challenges in national security
Startups and government defense agencies have historically seemed like polar opposites. Startups thrive on speed and risk, while defense agencies are more cautious. Over the past few years, however, things have changed. Many startups are eager to work with these organizations, which are always looking for innovative solutions to their hardest problems.
To help bridge that gap while advancing research along the way, MIT Lecturer Gene Keselman launched MIT’s Mission Innovation X (MIx) along with Sertac Karaman, a professor in the MIT Department of Aeronautics and Astronautics, and Fiona Murray, the William Porter Professor of Entrepreneurship at the MIT Sloan School of Management. MIx develops educational programming, supports research at MIT, and facilitates connections among government organizations, startups, and researchers.
“Startups know how to commercialize their tech, but they don’t necessarily know how to work with the government, and especially how to understand the needs of defense customers,” explains MIx Senior Program Manager Keenan Blatt. “There are a lot of different challenges when it comes to engaging with defense, not only from a procurement cycle and timeline perspective, but also from a culture perspective.”
MIx’s work helps innovators secure crucial early funding while giving defense agencies access to cutting-edge technologies, boosting America’s security capabilities in the process. Through the work, MIx has also become a thought leader in the emerging “dual-use” space, in which researchers and founders make strategic choices to advance technologies that have both civilian and defense applications.
Gene Keselman, the executive director of MIx as well as managing director of MIT’s venture studio Proto Ventures and a colonel in the U.S. Air Force Reserve, believes MIT is uniquely positioned to deliver on MIx’s mission.
“It’s not a coincidence MIx is happening at MIT,” says Keselman, adding that supporting national security “is part of MIT’s ethos.”
A history of service
MIx’s work has deep roots at the Institute.
“MIT has worked with the Department of Defense since at least since the 1940s, but really going back to its founding years,” says Karaman, who is also the director of MIT’s Laboratory for Information and Decision Systems (LIDS), a research group with its own long history of working with the government.
“The difference today,” adds Murray, who teaches courses on building deep tech ventures and regional innovation ecosystems and is the vice chair of NATO's Innovation Fund, “is that defense departments and others looking to support the defense, security, and resilience agenda are looking to several innovation ecosystem stakeholders — universities, startup ventures, and venture capitalists — for solutions. Not only from the large prime contractors. We have learned this lesson from Ukraine, but the same ecosystem logic is at the core of our MIx offer.”
MIx was borne out of the MIT Innovation Initiative in response to interest Keselman saw from researchers and defense officials in expanding MIT’s work with the defense and global security communities. About seven years ago, he hired Katie Person, who left MIT last year to become a battalion commander, to handle all that interest as a program manager with the initiative. MIx activities, like mentoring and educating founders, began shortly after, and MIx officially launched at MIT in 2021.
“It was a good example of the ways in which MIT responds to its students’ interests and external demand,” Keselman says.
One source of early interest was from startup founders who wanted to know how to work with the defense industry and commercialize technology that could have dual commercial and defense applications. That led the team to launch the Dual Use Ventures course, which helps startup founders and other innovators work with defense agencies. The course has since been offered annually during MIT’s Independent Activities Period (IAP) and tailored for NATO’s Defense Innovation Accelerator for the North Atlantic (DIANA).
Personnel from agencies including U.S. Special Operations Command were also interested in working with MIT students, which led the MIx team to develop course 15.362/6.9160 (Engineering Innovation: Global Security Systems), which is taken each spring by students across MIT and Harvard University.
“There are the government organizations that want to be more innovative and work with startups, and there are startups that want to get access to funding from government and have government as a customer,” Keselman says. “We’re kind of the middle layer, facilitating connections, educating, and partnering on research.”
MIx research activities give student and graduate researchers opportunities to work on pressing problems in the real world, and the MIT community has responded eagerly: More than 150 students applied for MIx’s openings in this summer’s Undergraduate Research Opportunities Program.
"We’re helping push the boundaries of what’s possible and explore the frontiers of technology, but do it in a way that is publishable," says MIx Head Research Scientist A.J. Perez ’13, MEng ’14, PhD ’23. “More broadly, we want to unlock as much support for students and researchers at MIT as possible to work on problems that we know matter to defense agencies.”
Early wins
Some of MIx’s most impactful research so far has come in partnership with startups. For example, MIx helped the startup Picogrid secure a small business grant from the U.S. Air Force to build an early wildfire detection system. As part of the grant, MIT students built a computer vision model for Picogrid’s devices that can detect smoke in the sky, proving the technical feasibility of the system and describing a promising new pathway in the field of machine learning.
In another recent project with the MIT alumni-founded startup Nominal, MIT students helped improve and automate post-flight data analysis for the U.S. Air Force’s Test Pilot School.
MIx’s work connecting MIT’s innovators and the wider innovation ecosystem with defense agencies has already begun to bear fruit, and many members of MIx believe early collaborations are a sign of things to come.
“We haven’t even scratched the surface of the potential for MIx,” says Karaman, “This could be the start of something much bigger.”
LLMs factor in unrelated information when recommending medical treatments
A large language model (LLM) deployed to make treatment recommendations can be tripped up by nonclinical information in patient messages, like typos, extra white space, missing gender markers, or the use of uncertain, dramatic, and informal language, according to a study by MIT researchers.
They found that making stylistic or grammatical changes to messages increases the likelihood an LLM will recommend that a patient self-manage their reported health condition rather than come in for an appointment, even when that patient should seek medical care.
Their analysis also revealed that these nonclinical variations in text, which mimic how people really communicate, are more likely to change a model’s treatment recommendations for female patients, resulting in a higher percentage of women who were erroneously advised not to seek medical care, according to human doctors.
This work “is strong evidence that models must be audited before use in health care — which is a setting where they are already in use,” says Marzyeh Ghassemi, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS), a member of the Institute of Medical Engineering Sciences and the Laboratory for Information and Decision Systems, and senior author of the study.
These findings indicate that LLMs take nonclinical information into account for clinical decision-making in previously unknown ways. It brings to light the need for more rigorous studies of LLMs before they are deployed for high-stakes applications like making treatment recommendations, the researchers say.
“These models are often trained and tested on medical exam questions but then used in tasks that are pretty far from that, like evaluating the severity of a clinical case. There is still so much about LLMs that we don’t know,” adds Abinitha Gourabathina, an EECS graduate student and lead author of the study.
They are joined on the paper, which will be presented at the ACM Conference on Fairness, Accountability, and Transparency, by graduate student Eileen Pan and postdoc Walter Gerych.
Mixed messages
Large language models like OpenAI’s GPT-4 are being used to draft clinical notes and triage patient messages in health care facilities around the globe, in an effort to streamline some tasks to help overburdened clinicians.
A growing body of work has explored the clinical reasoning capabilities of LLMs, especially from a fairness point of view, but few studies have evaluated how nonclinical information affects a model’s judgment.
Interested in how gender impacts LLM reasoning, Gourabathina ran experiments where she swapped the gender cues in patient notes. She was surprised that formatting errors in the prompts, like extra white space, caused meaningful changes in the LLM responses.
To explore this problem, the researchers designed a study in which they altered the model’s input data by swapping or removing gender markers, adding colorful or uncertain language, or inserting extra space and typos into patient messages.
Each perturbation was designed to mimic text that might be written by someone in a vulnerable patient population, based on psychosocial research into how people communicate with clinicians.
For instance, extra spaces and typos simulate the writing of patients with limited English proficiency or those with less technological aptitude, and the addition of uncertain language represents patients with health anxiety.
“The medical datasets these models are trained on are usually cleaned and structured, and not a very realistic reflection of the patient population. We wanted to see how these very realistic changes in text could impact downstream use cases,” Gourabathina says.
They used an LLM to create perturbed copies of thousands of patient notes while ensuring the text changes were minimal and preserved all clinical data, such as medication and previous diagnosis. Then they evaluated four LLMs, including the large, commercial model GPT-4 and a smaller LLM built specifically for medical settings.
They prompted each LLM with three questions based on the patient note: Should the patient manage at home, should the patient come in for a clinic visit, and should a medical resource be allocated to the patient, like a lab test.
The researchers compared the LLM recommendations to real clinical responses.
Inconsistent recommendations
They saw inconsistencies in treatment recommendations and significant disagreement among the LLMs when they were fed perturbed data. Across the board, the LLMs exhibited a 7 to 9 percent increase in self-management suggestions for all nine types of altered patient messages.
This means LLMs were more likely to recommend that patients not seek medical care when messages contained typos or gender-neutral pronouns, for instance. The use of colorful language, like slang or dramatic expressions, had the biggest impact.
They also found that models made about 7 percent more errors for female patients and were more likely to recommend that female patients self-manage at home, even when the researchers removed all gender cues from the clinical context.
Many of the worst results, like patients told to self-manage when they have a serious medical condition, likely wouldn’t be captured by tests that focus on the models’ overall clinical accuracy.
“In research, we tend to look at aggregated statistics, but there are a lot of things that are lost in translation. We need to look at the direction in which these errors are occurring — not recommending visitation when you should is much more harmful than doing the opposite,” Gourabathina says.
The inconsistencies caused by nonclinical language become even more pronounced in conversational settings where an LLM interacts with a patient, which is a common use case for patient-facing chatbots.
But in follow-up work, the researchers found that these same changes in patient messages don’t affect the accuracy of human clinicians.
“In our follow up work under review, we further find that large language models are fragile to changes that human clinicians are not,” Ghassemi says. “This is perhaps unsurprising — LLMs were not designed to prioritize patient medical care. LLMs are flexible and performant enough on average that we might think this is a good use case. But we don’t want to optimize a health care system that only works well for patients in specific groups.”
The researchers want to expand on this work by designing natural language perturbations that capture other vulnerable populations and better mimic real messages. They also want to explore how LLMs infer gender from clinical text.
Researchers present bold ideas for AI at MIT Generative AI Impact Consortium kickoff event
Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.
The call received 180 submissions from nearly 250 faculty members, spanning all of MIT’s five schools and the college. The overwhelming response across the Institute exemplifies the growing interest in AI and follows in the wake of MIT’s Generative AI Week and call for impact papers. Fifty-five proposals were selected for MGAIC’s inaugural seed grants, with several more selected to be funded by the consortium’s founding company members.
Over 30 funding recipients presented their proposals to the greater MIT community at a kickoff event on May 13. Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the consortium, welcomed the attendees and thanked the consortium’s founding industry members.
“The amazing response to our call for proposals is an incredible testament to the energy and creativity that MGAIC has sparked at MIT. We are especially grateful to our founding members, whose support and vision helped bring this endeavor to life,” adds Chandrakasan. “One of the things that has been most remarkable about MGAIC is that this is a truly cross-Institute initiative. Deans from all five schools and the college collaborated in shaping and implementing it.”
Vivek F. Farias, the Patrick J. McGovern (1959) Professor at the MIT Sloan School of Management and co-faculty director of the consortium with Tim Kraska, associate professor of electrical engineering and computer science in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), emceed the afternoon of five-minute lightning presentations.
Presentation highlights include:
“AI-Driven Tutors and Open Datasets for Early Literacy Education,” presented by Ola Ozernov-Palchik, a research scientist at the McGovern Institute for Brain Research, proposed a refinement for AI-tutors for pK-7 students to potentially decrease literacy disparities.
“Developing jam_bots: Real-Time Collaborative Agents for Live Human-AI Musical Improvisation,” presented by Anna Huang, assistant professor of music and assistant professor of electrical engineering and computer science, and Joe Paradiso, the Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences at the MIT Media Lab, aims to enhance human-AI musical collaboration in real-time for live concert improvisation.
“GENIUS: GENerative Intelligence for Urban Sustainability,” presented by Norhan Bayomi, a postdoc at the MIT Environmental Solutions Initiative and a research assistant in the Urban Metabolism Group, which aims to address the critical gap of a standardized approach in evaluating and benchmarking cities’ climate policies.
Georgia Perakis, the John C Head III Dean (Interim) of the MIT Sloan School of Management and professor of operations management, operations research, and statistics, who serves as co-chair of the GenAI Dean’s oversight group with Dan Huttenlocher, dean of the MIT Schwarzman College of Computing, ended the event with closing remarks that emphasized “the readiness and eagerness of our community to lead in this space.”
“This is only the beginning,” he continued. “We are at the front edge of a historic moment — one where MIT has the opportunity, and the responsibility, to shape the future of generative AI with purpose, with excellence, and with care.”
Introducing the L. Rafael Reif Innovation Corridor
The open space connecting Hockfield Court with Massachusetts Avenue, in the heart of MIT’s campus, is now the L. Rafael Reif Innovation Corridor, in honor of the Institute’s 17th president. At a dedication ceremony Monday, Reif’s colleagues, friends, and family gathered to honor his legacy and unveil a marker for the walkway that was previously known as North Corridor or “the Outfinite.”
“It’s no accident that the space we dedicate today is not a courtyard, but a corridor — a channel for people and ideas to flow freely through the heart of MIT, and to carry us outward, to limits of our aspirations,” said Sally Kornbluth, who succeeded Reif as MIT president in 2023.
“With his signature combination of new-world thinking and old-world charm, and as a grand thinker and doer, Rafael left an indelible mark on MIT,” Kornbluth said. “As a permanent testament to his service and his achievements in service to MIT, the nation, and the world, we now dedicate this space as the L. Rafael Reif Innovation Corridor.”
Reif served as president for more than 10 years, following seven years as provost. He has been at MIT since 1980, when he joined the faculty as an assistant professor of electrical engineering.
“Through all those roles, what stood out most was his humility, his curiosity, and his remarkable ability to speak with clarity and conviction,” said Corporation Chair Mark Gorenberg, who opened the ceremony. “Under his leadership, MIT not only stayed true to its mission, it thrived, expanding its impact and strengthening its global voice.”
Gorenberg introduced Abraham J. Siegel Professor of Management and professor of operations research Cindy Barnhart, who served as chancellor, then provost, during Reif’s term as president. Barnhart, who will be stepping down as provost on July 1, summarized the many highlights from Reif’s presidency, such as the establishment of MIT Schwarzman College of Computing, the revitalization of Kendall Square, and the launch of The Engine, as well as the construction or modernization of many buildings, from the Wright Brothers Wind Tunnel to the new Edward and Joyce Linde Music Building, among other accomplishments.
“Beyond space, Rafael’s bold thinking and passion extends to MIT’s approach to education,” Barnhart continued, describing how Reif championed the building of OpenCourseWare, MITx, and edX. She also noted his support for the health and well-being of the MIT community, through efforts such as addressing student sexual misconduct and forming the MindHandHeart initiative. He also hosted dance parties and socials, joined students in the dining halls for dinner, chatted with faculty and staff over breakfasts and at forums, and more.
“At gatherings over the years, Rafael’s wife, Chris, was there by his side,” Barnhart noted, adding, “I’d like to take this opportunity to acknowledge her and thank her for her welcoming and gracious spirit.”
In summary, “I am grateful to Rafael for his visionary leadership and for his love of MIT and its people,” Barnhart said as she presented Reif with a 3D-printed replica of the Maclaurin buildings (MIT Buildings 3, 4, and 10), which was created through a collaboration between the Glass Lab, Edgerton Center, and Project Manus.
Next, Institute Professor Emeritus John Harbison played an interlude on the piano, and a musical ensemble reprised the “Rhumba for Rafael,” which Harbison composed for Reif’s inauguration in 2012.
When Reif took the podium, he reflected on the location of the corridor and its significance to early chapters in his own career; his first office and lab were in Building 13, overlooking what is now the eponymous walkway.
He also considered the years ahead: “The people who pass through this corridor in the future will surely experience the unparalleled excitement of being young at MIT, with the full expectation of upending the world to improve it,” he said.
Faculty and staff walking through the corridor may experience the “undimmed excitement” of working and studying alongside extraordinary students and colleagues, and feeling the “deep satisfaction of having created infinite memories here throughout a long career.”
“Even if none of them gives me a thought,” Reif continued, “I would like to believe that my spirit will be here, watching them with pride as they continue the never-ending mission of creating a better world.”
Island rivers carve passageways through coral reefs
Volcanic islands, such as the islands of Hawaii and the Caribbean, are surrounded by coral reefs that encircle an island in a labyrinthine, living ring. A coral reef is punctured at points by reef passes — wide channels that cut through the coral and serve as conduits for ocean water and nutrients to filter in and out. These watery passageways provide circulation throughout a reef, helping to maintain the health of corals by flushing out freshwater and transporting key nutrients.
Now, MIT scientists have found that reef passes are shaped by island rivers. In a study appearing today in the journal Geophysical Research Letters, the team shows that the locations of reef passes along coral reefs line up with where rivers funnel out from an island’s coast.
Their findings provide the first quantitative evidence of rivers forming reef passes. Scientists and explorers had speculated that this may be the case: Where a river on a volcanic island meets the coast, the freshwater and sediment it carries flows toward the reef, where a strong enough flow can tunnel into the surrounding coral. This idea has been proposed from time to time but never quantitatively tested, until now.
“The results of this study help us to understand how the health of coral reefs depends on the islands they surround,” says study author Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences at MIT.
“A lot of discussion around rivers and their impact on reefs today has been negative because of human impact and the effects of agricultural practices,” adds lead author Megan Gillen, a graduate student in the MIT-WHOI Joint Program in Oceanography. “This study shows the potential long-term benefits rivers can have on reefs, which I hope reshapes the paradigm and highlights the natural state of rivers interacting with reefs.”
The study’s other co-author is Andrew Ashton of the Woods Hole Oceanographic Institution.
Drawing the lines
The new study is based on the team’s analysis of the Society Islands, a chain of islands in the South Pacific Ocean that includes Tahiti and Bora Bora. Gillen, who joined the MIT-WHOI program in 2020, was interested in exploring connections between coral reefs and the islands they surround. With limited options for on-site work during the Covid-19 pandemic, she and Perron looked to see what they could learn through satellite images and maps of island topography. They did a quick search using Google Earth and zeroed in on the Society Islands for their uniquely visible reef and island features.
“The islands in this chain have these iconic, beautiful reefs, and we kept noticing these reef passes that seemed to align with deeply embayed portions of the coastline,” Gillen says. “We started asking ourselves, is there a correlation here?”
Viewed from above, the coral reefs that circle some islands bear what look to be notches, like cracks that run straight through a ring. These breaks in the coral are reef passes — large channels that run tens of meters deep and can be wide enough for some boats to pass through. On first look, Gillen noticed that the most obvious reef passes seemed to line up with flooded river valleys — depressions in the coastline that have been eroded over time by island rivers that flow toward the ocean. She wondered whether and to what extent island rivers might shape reef passes.
“People have examined the flow through reef passes to understand how ocean waves and seawater circulate in and out of lagoons, but there have been no claims of how these passes are formed,” Gillen says. “Reef pass formation has been mentioned infrequently in the literature, and people haven’t explored it in depth.”
Reefs unraveled
To get a detailed view of the topography in and around the Society Islands, the team used data from the NASA Shuttle Radar Topography Mission — two radar antennae that flew aboard the space shuttle in 1999 and measured the topography across 80 percent of the Earth’s surface.
The researchers used the mission’s topographic data in the Society Islands to create a map of every drainage basin along the coast of each island, to get an idea of where major rivers flow or once flowed. They also marked the locations of every reef pass in the surrounding coral reefs. They then essentially “unraveled” each island’s coastline and reef into a straight line, and compared the locations of basins versus reef passes.
“Looking at the unwrapped shorelines, we find a significant correlation in the spatial relationship between these big river basins and where the passes line up,” Gillen says. “So we can say that statistically, the alignment of reef passes and large rivers does not seem random. The big rivers have a role in forming passes.”
As for how rivers shape the coral conduits, the team has two ideas, which they call, respectively, reef incision and reef encroachment. In reef incision, they propose that reef passes can form in times when the sea level is relatively low, such that the reef is exposed above the sea surface and a river can flow directly over the reef. The water and sediment carried by the river can then erode the coral, progressively carving a path through the reef.
When sea level is relatively higher, the team suspects a reef pass can still form, through reef encroachment. Coral reefs naturally live close to the water surface, where there is light and opportunity for photosynthesis. When sea levels rise, corals naturally grow upward and inward toward an island, to try to “catch up” to the water line.
“Reefs migrate toward the islands as sea levels rise, trying to keep pace with changing average sea level,” Gillen says.
However, part of the encroaching reef can end up in old river channels that were previously carved out by large rivers and that are lower than the rest of the island coastline. The corals in these river beds end up deeper than light can extend into the water column, and inevitably drown, leaving a gap in the form of a reef pass.
“We don’t think it’s an either/or situation,” Gillen says. “Reef incision occurs when sea levels fall, and reef encroachment happens when sea levels rise. Both mechanisms, occurring over dozens of cycles of sea-level rise and island evolution, are likely responsible for the formation and maintenance of reef passes over time.”
The team also looked to see whether there were differences in reef passes in older versus younger islands. They observed that younger islands were surrounded by more reef passes that were spaced closer together, versus older islands that had fewer reef passes that were farther apart.
As islands age, they subside, or sink, into the ocean, which reduces the amount of land that funnels rainwater into rivers. Eventually, rivers are too weak to keep the reef passes open, at which point, the ocean likely takes over, and incoming waves could act to close up some passes.
Gillen is exploring ideas for how rivers, or river-like flow, can be engineered to create paths through coral reefs in ways that would promote circulation and benefit reef health.
“Part of me wonders: If you had a more persistent flow, in places where you don’t naturally have rivers interacting with the reef, could that potentially be a way to increase health, by incorporating that river component back into the reef system?” Gillen says. “That’s something we’re thinking about.”
This research was supported, in part, by the WHOI Watson and Von Damm fellowships.
MIT engineers uncover a surprising reason why tissues are flexible or rigid
Water makes up around 60 percent of the human body. More than half of this water sloshes around inside the cells that make up organs and tissues. Much of the remaining water flows in the nooks and crannies between cells, much like seawater between grains of sand.
Now, MIT engineers have found that this “intercellular” fluid plays a major role in how tissues respond when squeezed, pressed, or physically deformed. Their findings could help scientists understand how cells, tissues, and organs physically adapt to conditions such as aging, cancer, diabetes, and certain neuromuscular diseases.
In a paper appearing today in Nature Physics, the researchers show that when a tissue is pressed or squeezed, it is more compliant and relaxes more quickly when the fluid between its cells flows easily. When the cells are packed together and there is less room for intercellular flow, the tissue as a whole is stiffer and resists being pressed or squeezed.
The findings challenge conventional wisdom, which has assumed that a tissue’s compliance depends mainly on what’s inside, rather than around, a cell. Now that the researchers have shown that intercellular flow determines how tissues will adapt to physical forces, the results can be applied to understand a wide range of physiological conditions, including how muscles withstand exercise and recover from injury, and how a tissue’s physical adaptability may affect the progression of aging, cancer, and other medical conditions.
The team envisions the results could also inform the design of artificial tissues and organs. For instance, in engineering artificial tissue, scientists might optimize intercellular flow within the tissue to improve its function or resilience. The researchers suspect that intercellular flow could also be a route for delivering nutrients or therapies, either to heal a tissue or eradicate a tumor.
“People know there is a lot of fluid between cells in tissues, but how important that is, in particular in tissue deformation, is completely ignored,” says Ming Guo, associate professor of mechanical engineering at MIT. “Now we really show we can observe this flow. And as the tissue deforms, flow between cells dominates the behavior. So, let’s pay attention to this when we study diseases and engineer tissues.”
Guo is a co-author of the new study, which includes lead author and MIT postdoc Fan Liu PhD ’24, along with Bo Gao and Hui Li of Beijing Normal University, and Liran Lei and Shuainan Liu of Peking Union Medical College.
Pressed and squeezed
The tissues and organs in our body are constantly undergoing physical deformations, from the large stretch and strain of muscles during motion to the small and steady contractions of the heart. In some cases, how easily tissues adapt to deformation can relate to how quickly a person can recover from, for instance, an allergic reaction, a sports injury, or a brain stroke. However, exactly what sets a tissue’s response to deformation is largely unknown.
Guo and his group at MIT looked into the mechanics of tissue deformation, and the role of intercellular flow in particular, following a study they published in 2020. In that study, they focused on tumors and observed the way in which fluid can flow from the center of a tumor out to its edges, through the cracks and crevices between individual tumor cells. They found that when a tumor was squeezed or pressed, the intercellular flow increased, acting as a conveyor belt to transport fluid from the center to the edges. Intercellular flow, they found, could fuel tumor invasion into surrounding regions.
In their new study, the team looked to see what role this intercellular flow might play in other, noncancerous tissues.
“Whether you allow the fluid to flow between cells or not seems to have a major impact,” Guo says. “So we decided to look beyond tumors to see how this flow influences how other tissues respond to deformation.”
A fluid pancake
Guo, Liu, and their colleagues studied the intercellular flow in a variety of biological tissues, including cells derived from pancreatic tissue. They carried out experiments in which they first cultured small clusters of tissue, each measuring less than a quarter of a millimeter wide and numbering tens of thousands of individual cells. They placed each tissue cluster in a custom-designed testing platform that the team built specifically for the study.
“These microtissue samples are in this sweet zone where they are too large to see with atomic force microscopy techniques and too small for bulkier devices,” Guo says. “So, we decided to build a device.”
The researchers adapted a high-precision microbalance that measures minute changes in weight. They combined this with a step motor that is designed to press down on a sample with nanometer precision. The team placed tissue clusters one at a time on the balance and recorded each cluster’s changing weight as it relaxed from a sphere into the shape of a pancake in response to the compression. The team also took videos of the clusters as they were squeezed.
For each type of tissue, the team made clusters of varying sizes. They reasoned that if the tissue’s response is ruled by the flow between cells, then the bigger a tissue, the longer it should take for water to seep through, and therefore, the longer it should take the tissue to relax. It should take the same amount of time, regardless of size, if a tissue’s response is determined by the structure of the tissue rather than fluid.
Over multiple experiments with a variety of tissue types and sizes, the team observed a similar trend: The bigger the cluster, the longer it took to relax, indicating that intercellular flow dominates a tissue’s response to deformation.
“We show that this intercellular flow is a crucial component to be considered in the fundamental understanding of tissue mechanics and also applications in engineering living systems,” Liu says.
Going forward, the team plans to look into how intercellular flow influences brain function, particularly in disorders such as Alzheimer’s disease.
“Intercellular or interstitial flow can help you remove waste and deliver nutrients to the brain,” Liu adds. “Enhancing this flow in some cases might be a good thing.”
“As this work shows, as we apply pressure to a tissue, fluid will flow,” Guo says. “In the future, we can think of designing ways to massage a tissue to allow fluid to transport nutrients between cells.”
“Cold spray” 3D printing technique proves effective for on-site bridge repair
More than half of the nation’s 623,218 bridges are experiencing significant deterioration. Through an in-field case study conducted in western Massachusetts, a team led by the University of Massachusetts at Amherst in collaboration with researchers from the MIT Department of Mechanical Engineering (MechE) has just successfully demonstrated that 3D printing may provide a cost-effective, minimally disruptive solution.
“Anytime you drive, you go under or over a corroded bridge,” says Simos Gerasimidis, associate professor of civil and environmental engineering at UMass Amherst and former visiting professor in the Department of Civil and Environmental Engineering at MIT, in a press release. “They are everywhere. It’s impossible to avoid, and their condition often shows significant deterioration. We know the numbers.”
The numbers, according to the American Society of Civil Engineers’ 2025 Report Card for America’s Infrastructure, are staggering: Across the United States, 49.1 percent of the nation’s 623,218 bridges are in “fair” condition and 6.8 percent are in “poor” condition. The projected cost to restore all of these failing bridges exceeds $191 billion.
A proof-of-concept repair took place last month on a small, corroded section of a bridge in Great Barrington, Massachusetts. The technique, called cold spray, can extend the life of beams, reinforcing them with newly deposited steel. The process accelerates particles of powdered steel in heated, compressed gas, and then a technician uses an applicator to spray the steel onto the beam. Repeated sprays create multiple layers, restoring thickness and other structural properties.
This method has proven to be an effective solution for other large structures like submarines, airplanes, and ships, but bridges present a problem on a greater scale. Unlike movable vessels, stationary bridges cannot be brought to the 3D printer — the printer must be brought on-site — and, to lessen systemic impacts, repairs must also be made with minimal disruptions to traffic, which the new approach allows.
“Now that we’ve completed this proof-of-concept repair, we see a clear path to a solution that is much faster, less costly, easier, and less invasive,” says Gerasimidis. “To our knowledge, this is a first. Of course, there is some R&D that needs to be developed, but this is a huge milestone to that.”
“This is a tremendous collaboration where cutting-edge technology is brought to address a critical need for infrastructure in the commonwealth and across the United States,” says John Hart, Class of 1922 Professor and head of the Department of MechE at MIT. Hart and Haden Quinlan, senior program manager in the Center for Advanced Production Technologies at MIT, are leading MIT’s efforts in in the project. Hart is also faculty co-lead of the recently announced MIT Initiative for New Manufacturing.
“Integrating digital systems with advanced physical processing is the future of infrastructure,” says Quinlan. “We’re excited to have moved this technology beyond the lab and into the field, and grateful to our collaborators in making this work possible.”
UMass says the Massachusetts Department of Transportation (MassDOT) has been a valued research partner, helping to identify the problem and providing essential support for the development and demonstration of the technology. Technical guidance and funding support were provided by the MassDOT Highway Division and the Research and Technology Transfer Program.
Equipment for this project was supported through the Massachusetts Manufacturing Innovation Initiative, a statewide program led by the Massachusetts Technology Collaborative (MassTech)’s Center for Advanced Manufacturing that helps bridge the gap between innovation and commercialization in hard tech manufacturing.
“It’s a very Massachusetts success story,” Gerasimidis says. “It involves MassDOT being open-minded to new ideas. It involves UMass and MIT putting [together] the brains to do it. It involves MassTech to bring manufacturing back to Massachusetts. So, I think it’s a win-win for everyone involved here.”
The bridge in Great Barrington is scheduled for demolition in a few years. After demolition occurs, the recently-sprayed beams will be taken back to UMass for testing and measurement to study how well the deposited steel powder adhered to the structure in the field compared to in a controlled lab setting, if it corroded further after it was sprayed, and determine its mechanical properties.
This demonstration builds on several years of research by the UMass and MIT teams, including development of a “digital thread” approach to scan corroded beam surfaces and determine material deposition profiles, alongside laboratory studies of cold spray and other additive manufacturing approaches that are suited to field deployment.
Altogether, this work is a collaborative effort among UMass Amherst, MIT MechE, MassDOT, the Massachusetts Technology Collaborative (MassTech), the U.S. Department of Transportation, and the Federal Highway Administration. Research reports are available on the MassDOT website.
When Earth iced over, early life may have sheltered in meltwater ponds
When the Earth froze over, where did life shelter? MIT scientists say one refuge may have been pools of melted ice that dotted the planet’s icy surface.
In a study appearing today in Nature Communications, the researchers report that 635 million to 720 million years ago, during periods known as “Snowball Earth,” when much of the planet was covered in ice, some of our ancient cellular ancestors could have waited things out in meltwater ponds.
The scientists found that eukaryotes — complex cellular lifeforms that eventually evolved into the diverse multicellular life we see today — could have survived the global freeze by living in shallow pools of water. These small, watery oases may have persisted atop relatively shallow ice sheets present in equatorial regions. There, the ice surface could accumulate dark-colored dust and debris from below, which enhanced its ability to melt into pools. At temperatures hovering around 0 degrees Celsius, the resulting meltwater ponds could have served as habitable environments for certain forms of early complex life.
The team drew its conclusions based on an analysis of modern-day meltwater ponds. Today in Antarctica, small pools of melted ice can be found along the margins of ice sheets. The conditions along these polar ice sheets are similar to what likely existed along ice sheets near the equator during Snowball Earth.
The researchers analyzed samples from a variety of meltwater ponds located on the McMurdo Ice Shelf in an area that was first described by members of Robert Falcon Scott's 1903 expedition as “dirty ice.” The MIT researchers discovered clear signatures of eukaryotic life in every pond. The communities of eukaryotes varied from pond to pond, revealing a surprising diversity of life across the setting. The team also found that salinity plays a key role in the kind of life a pond can host: Ponds that were more brackish or salty had more similar eukaryotic communities, which differed from those in ponds with fresher waters.
“We’ve shown that meltwater ponds are valid candidates for where early eukaryotes could have sheltered during these planet-wide glaciation events,” says lead author Fatima Husain, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “This shows us that diversity is present and possible in these sorts of settings. It’s really a story of life’s resilience.”
The study’s MIT co-authors include Schlumberger Professor of Geobiology Roger Summons and former postdoc Thomas Evans, along with Jasmin Millar of Cardiff University, Anne Jungblut at the Natural History Museum in London, and Ian Hawes of the University of Waikato in New Zealand.
Polar plunge
“Snowball Earth” is the colloquial term for periods of time in Earth history during which the planet iced over. It is often used as a reference to the two consecutive, multi-million-year glaciation events which took place during the Cryogenian Period, which geologists refer to as the time between 635 and 720 million years ago. Whether the Earth was more of a hardened snowball or a softer “slushball” is still up for debate. But scientists are certain of one thing: Most of the planet was plunged into a deep freeze, with average global temperatures of minus 50 degrees Celsius. The question has been: How and where did life survive?
“We’re interested in understanding the foundations of complex life on Earth. We see evidence for eukaryotes before and after the Cryogenian in the fossil record, but we largely lack direct evidence of where they may have lived during,” Husain says. “The great part of this mystery is, we know life survived. We’re just trying to understand how and where.”
There are a number of ideas for where organisms could have sheltered during Snowball Earth, including in certain patches of the open ocean (if such environments existed), in and around deep-sea hydrothermal vents, and under ice sheets. In considering meltwater ponds, Husain and her colleagues pursued the hypothesis that surface ice meltwaters may also have been capable of supporting early eukaryotic life at the time.
“There are many hypotheses for where life could have survived and sheltered during the Cryogenian, but we don’t have excellent analogs for all of them,” Husain notes. “Above-ice meltwater ponds occur on Earth today and are accessible, giving us the opportunity to really focus in on the eukaryotes which live in these environments.”
Small pond, big life
For their new study, the researchers analyzed samples taken from meltwater ponds in Antarctica. In 2018, Summons and colleagues from New Zealand traveled to a region of the McMurdo Ice Shelf in East Antarctica, known to host small ponds of melted ice, each just a few feet deep and a few meters wide. There, water freezes all the way to the seafloor, in the process trapping dark-colored sediments and marine organisms. Wind-driven loss of ice from the surface creates a sort of conveyer belt that brings this trapped debris to the surface over time, where it absorbs the sun’s warmth, causing ice to melt, while surrounding debris-free ice reflects incoming sunlight, resulting in the formation of shallow meltwater ponds.
The bottom of each pond is lined with mats of microbes that have built up over years to form layers of sticky cellular communities.
“These mats can be a few centimeters thick, colorful, and they can be very clearly layered,” Husain says.
These microbial mats are made up of cyanobacteria, prokaryotic, single-celled photosynthetic organisms that lack a cell nucleus or other organelles. While these ancient microbes are known to survive within some of the the harshest environments on Earth including meltwater ponds, the researchers wanted to know whether eukaryotes — complex organisms that evolved a cell nucleus and other membrane bound organelles — could also weather similarly challenging circumstances. Answering this question would take more than a microscope, as the defining characteristics of the microscopic eukaryotes present among the microbial mats are too subtle to distinguish by eye.
To characterize the eukaryotes, the team analyzed the mats for specific lipids they make called sterols, as well as genetic components called ribosomal ribonucleic acid (rRNA), both of which can be used to identify organisms with varying degrees of specificity. These two independent sets of analyses provided complementary fingerprints for certain eukaryotic groups. As part of the team’s lipid research, they found many sterols and rRNA genes closely associated with specific types of algae, protists, and microscopic animals among the microbial mats. The researchers were able to assess the types and relative abundance of lipids and rRNA genes from pond to pond, and found the ponds hosted a surprising diversity of eukaryotic life.
“No two ponds were alike,” Husain says. “There are repeating casts of characters, but they’re present in different abundances. And we found diverse assemblages of eukaryotes from all the major groups in all the ponds studied. These eukaryotes are the descendants of the eukaryotes that survived the Snowball Earth. This really highlights that meltwater ponds during Snowball Earth could have served as above-ice oases that nurtured the eukaryotic life that enabled the diversification and proliferation of complex life — including us — later on.”
This research was supported, in part, by the NASA Exobiology Program, the Simons Collaboration on the Origins of Life, and a MISTI grant from MIT-New Zealand.